A. C. Antoulas, Approximation of Large-Scale Dynamical Systems, SIAM, 2005.


A. C. Antoulas, C. A. Beattie, S. Gugercin, Interpolatory model reduction of large-scale dynamical systems, Efficient Modeling and Control of Large-Scale Systems, Springer-Verlag, 2010.


P. Benner, Z. Bujanović, P. Kürschner, J. Saak, RADI: a low-rank ADI-type algorithm for large scale algebraic Riccati equations, Numerische Mathematik, Springer-Verlag, 2018.


C. A. Beattie, S. Gugercin, Interpolatory projection methods for structure-preserving model reduction, Systems & Control Letters 58, 2009


C. A. Beattie, S. Gugercin, Realization-independent H2-approximation, Proceedings of the 51st IEEE Conference on Decision and Control, 2012.


P. Benner, M. Köhler, J. Saak, Sparse-Dense Sylvester Equations in \(\mathcal{H}_2\)-Model Order Reduction, Max Planck Institute Magdeburg Preprint, available from, 2011.


P. Binev, A. Cohen, W. Dahmen, R. DeVore, G. Petrova, P. Wojtaszczyk, Convergence rates for greedy algorithms in reduced basis methods, SIAM J. Math. Anal., 43(3), 2011.


A. Buhr, C. Engwer, M. Ohlberger, S. Rave, A Numerically Stable A Posteriori Error Estimator for Reduced Basis Approximations of Elliptic Equations, Proceedings of the 11th World Congress on Computational Mechanics, 2014.


A. Buhr, K. Smetana, Randomized Local Model Order Reduction. SIAM Journal on Scientific Computing, 40(4), A2120–A2151, 2018.


Y. Chahlaoui, D. Lemonnier, A. Vandendorpe, P. Van Dooren, Second-order balanced truncation, Linear Algebra and its Applications, 2006, 415(2–3), 373-384


R. DeVore, G. Petrova & P. Wojtaszczyk, Greedy Algorithms for Reduced Bases in Banach Spaces, Constructive Approximation, 37, 455–466, 2013.


M. A. Grepl, A. T. Patera, A Posteriori Error Bounds For Reduced-Basis Approximations Of Parametrized Parabolic Partial Differential Equations, M2AN 39(1), 157-181, 2005.


S. Gugercin, A. C. Antoulas, C. A. Beattie, \(\mathcal{H}_2\) model reduction for large-scale linear dynamical systems, SIAM Journal on Matrix Analysis and Applications, 30(2), 609-638, 2008.


Haasdonk, B., Reduced basis methods for parametrized PDEs - a tutorial introduction for stationary and instationary problems, in Model reduction and approximation, SIAM, Philadelphia, PA, 15, 65-136, 2017.


Haasdonk, B.; Dihlmann, M. & Ohlberger, M., A training set and multiple bases generation approach for parameterized model reduction based on adaptive grids in parameter space, Math. Comput. Model. Dyn. Syst., 2011, 17, 423-442


B. Haasdonk, M. Ohlberger, Reduced basis method for finite volume approximations of parametrized evolution equations, M2AN 42(2), 277-302, 2008.


N. Halko, P. G. Martinsson and J. A. Tropp, Finding structure with randomness: probabilistic algorithms for constructing approximate matrix decompositions, SIAM Review, 53(2), 217–288, 2011.


C. Himpe, T. Leibner, S. Rave, Hierarchical Approximate Proper Orthogonal Decomposition, SIAM J. Sci. Comput. 40, A3267-A3292, 2018.


M. Hinze, R. Pinnau, M. Ulbrich, S. Ulbrich, Optimization with PDE constraints, Springer Netherlands, 2009.


J. Hesthaven, S. Ubbiali, Non-intrusive reduced order modeling of nonlinear problems using neural networks, Journal of Computational Physics, 363, pp. 55-78, 2018.


P. Kürschner, Efficient Low-Rank Solution of Large-Scale Matrix Equations, Shaker Verlag Aachen, available from, 2016.


D. G. Meyer and S. Srinivasan, Balancing and model reduction for second-order form linear systems, IEEE Trans. Automat. Control, 1996, 41, 1632–1644


D. Mustafa, K. Glover, Controller Reduction by \(\mathcal{H}_\infty\)-Balanced Truncation, IEEE Transactions on Automatic Control, 36(6), 668-682, 1991.


J. Nocedal and S. J. Wright, Numerical optimization, Springer Series in Operations Research and Financial Engineering, Second Edition, Springer New-York, 2006


P. C. Opdenacker, E. A. Jonckheere, A Contraction Mapping Preserving Balanced Reduction Scheme and Its Infinity Norm Error Bounds, IEEE Transactions on Circuits and Systems, 35(2), 184-189, 1988.


R. B. Lehoucq, Analysis and implementation of an implicitly restarted Arnoldi iteration, PhD thesis, Rice University, 1995


T. Reis and T. Stykel, Balanced truncation model reduction of second-order systems, Math. Comput. Model. Dyn. Syst., 2008, 14(5), 391-406


J. Rommes and N. Martins, Efficient computation of multivariable transfer function dominant poles using subspace acceleration. IEEE Trans. Power Syst. 21 (4), pp. 1471-1483, 2006


S. Wyatt, Issues in Interpolatory Model Reduction: Inexact Solves, Second Order Systems and DAEs, PhD thesis, Virginia Tech, 2012


Q. Wang, J. Hesthaven, D. Ray, Non-intrusive reduced order modeling of unsteady flows using artificial neural networks with application to a combustion problem, Journal of Computational Physics, 384, pp. 289-307, 2019.


Y. Xu and T. Zeng, Optimal \(\mathcal{H}_2\) Model Reduction for Large Scale MIMO Systems via Tangential Interpolation, International Journal of Numerical Analysis and Modeling, vol. 8, no. 1, pp. 174-188, 2011