pymor.algorithms.pod¶
Module Contents¶
Functions¶
Proper orthogonal decomposition of |
- pymor.algorithms.pod.pod(A, product=None, modes=None, rtol=1e-07, atol=0.0, l2_err=0.0, method='method_of_snapshots', orth_tol=1e-10)[source]¶
Proper orthogonal decomposition of
A.Viewing the
VectorArrayAas aA.dimxlen(A)matrix, the return values of this method are theVectorArrayof left singular vectors and aNumPy arrayof singular values of the singular value decomposition ofA, where the inner product on R^(dim(A)) is given byproductand the inner product on R^(len(A)) is the Euclidean inner product.Parameters
- A
The
VectorArrayfor which the POD is to be computed.- product
Inner product
Operatorw.r.t. which the POD is computed.- modes
If not
None, at most the firstmodesPOD modes (singular vectors) are returned.- rtol
Singular values smaller than this value multiplied by the largest singular value are ignored.
- atol
Singular values smaller than this value are ignored.
- l2_err
Do not return more modes than needed to bound the l2-approximation error by this value. I.e. the number of returned modes is at most
argmin_N { sum_{n=N+1}^{infty} s_n^2 <= l2_err^2 }
where
s_ndenotes the n-th singular value.- method
Which SVD method from
svd_vato use ('method_of_snapshots'or'qr_svd').- orth_tol
POD modes are reorthogonalized if the orthogonality error is above this value.
Returns
- POD
VectorArrayof POD modes.- SVALS
One-dimensional
NumPy arrayof singular values.