# `pymor.analyticalproblems.burgers`¶

## Module Contents¶

### Functions¶

 `burgers_problem` One-dimensional Burgers-type problem. `burgers_problem_2d` Two-dimensional Burgers-type problem.
pymor.analyticalproblems.burgers.burgers_problem(v=1.0, circle=True, initial_data_type='sin', parameter_range=(1.0, 2.0))[source]

One-dimensional Burgers-type problem.

The problem is to solve

```∂_t u(x, t, μ)  +  ∂_x (v * u(x, t, μ)^μ) = 0
u(x, 0, μ) = u_0(x)
```

for u with t in [0, 0.3] and x in [0, 2].

Parameters

v

The velocity v.

circle

If `True`, impose periodic boundary conditions. Otherwise Dirichlet left, outflow right.

initial_data_type

Type of initial data (`'sin'` or `'bump'`).

parameter_range

The interval in which μ is allowed to vary.

pymor.analyticalproblems.burgers.burgers_problem_2d(vx=1.0, vy=1.0, torus=True, initial_data_type='sin', parameter_range=(1.0, 2.0))[source]

Two-dimensional Burgers-type problem.

The problem is to solve

```∂_t u(x, t, μ)  +  ∇ ⋅ (v * u(x, t, μ)^μ) = 0
u(x, 0, μ) = u_0(x)
```

for u with t in [0, 0.3], x in [0, 2] x [0, 1].

Parameters

vx

The x component of the velocity vector v.

vy

The y component of the velocity vector v.

torus

If `True`, impose periodic boundary conditions. Otherwise, Dirichlet left and bottom, outflow top and right.

initial_data_type

Type of initial data (`'sin'` or `'bump'`).

parameter_range

The interval in which μ is allowed to vary.