pymor.reductors.interpolation

Module Contents

class pymor.reductors.interpolation.DelayBHIReductor(fom, mu=None)[source]

Bases: GenericBHIReductor

Bitangential Hermite interpolation for LinearDelayModels.

Parameters

fom

The full-order LinearDelayModel to reduce.

mu

Parameter values.

class pymor.reductors.interpolation.GenericBHIReductor(fom, mu=None)[source]

Bases: pymor.core.base.BasicObject

Generic bitangential Hermite interpolation reductor.

This is a generic reductor for reducing any linear Model that has a transfer function that is a FactorizedTransferFunction (see [BG09]). The interpolation here is limited to only up to the first derivative. Interpolation points are assumed to be pairwise distinct.

In particular, given:

  • interpolation points \(\sigma_i\),

  • right tangential directions \(b_i\), and

  • left tangential directions \(c_i\),

for \(i = 1, 2, \ldots, r\), which are closed under conjugation (if \(\sigma_i\) is real, then so are \(b_i\) and \(c_i\); if \(\sigma_i\) is complex, there is \(\sigma_j\) such that \(\sigma_j = \overline{\sigma_i}\), \(b_j = \overline{b_i}\), \(c_j = \overline{c_i}\)), this reductor finds a transfer function \(\hat{H}\) such that

\[\begin{split}H(\sigma_i) b_i & = \hat{H}(\sigma_i) b_i, \\ c_i^T H(\sigma_i) & = c_i^T \hat{H}(\sigma_i), \\ c_i^T H'(\sigma_i) b_i & = c_i^T \hat{H}'(\sigma_i) b_i,\end{split}\]

for all \(i = 1, 2, \ldots, r\).

Parameters

fom

The full-order Model to reduce.

mu

Parameter values.

Methods

reconstruct

Reconstruct high-dimensional vector from reduced vector u.

reduce

Bitangential Hermite interpolation.

reconstruct(self, u)[source]

Reconstruct high-dimensional vector from reduced vector u.

reduce(self, sigma, b, c, projection='orth')[source]

Bitangential Hermite interpolation.

Parameters

sigma

Interpolation points (closed under conjugation), sequence of length r.

b

Right tangential directions, NumPy array of shape (r, fom.dim_input).

c

Left tangential directions, NumPy array of shape (r, fom.dim_output).

projection

Projection method:

  • 'orth': projection matrices are orthogonalized with respect to the Euclidean inner product

  • 'biorth': projection matrices are biorthogolized with respect to the E product

Returns

rom

Reduced-order model.

class pymor.reductors.interpolation.LTIBHIReductor(fom, mu=None)[source]

Bases: GenericBHIReductor

Bitangential Hermite interpolation for LTIModels.

Parameters

fom

The full-order LTIModel to reduce.

mu

Parameter values.

Methods

reduce

Bitangential Hermite interpolation.

reduce(self, sigma, b, c, projection='orth')[source]

Bitangential Hermite interpolation.

Parameters

sigma

Interpolation points (closed under conjugation), sequence of length r.

b

Right tangential directions, NumPy array of shape (r, fom.dim_input).

c

Left tangential directions, NumPy array of shape (r, fom.dim_output).

projection

Projection method:

  • 'orth': projection matrices are orthogonalized with respect to the Euclidean inner product

  • 'biorth': projection matrices are biorthogolized with respect to the E product

  • 'arnoldi': projection matrices are orthogonalized using the rational Arnoldi process (available only for SISO systems).

Returns

rom

Reduced-order model.

class pymor.reductors.interpolation.SOBHIReductor(fom, mu=None)[source]

Bases: GenericBHIReductor

Bitangential Hermite interpolation for SecondOrderModels.

Parameters

fom

The full-order SecondOrderModel to reduce.

mu

Parameter values.

class pymor.reductors.interpolation.TFBHIReductor(fom, mu=None)[source]

Bases: pymor.core.base.BasicObject

Loewner bitangential Hermite interpolation reductor.

See [BG12].

Parameters

fom

TransferFunction or Model with a transfer_function attribute.

mu

Parameter values.

Methods

reconstruct

Reconstruct high-dimensional vector from reduced vector u.

reduce

Realization-independent tangential Hermite interpolation.

reconstruct(self, u)[source]

Reconstruct high-dimensional vector from reduced vector u.

reduce(self, sigma, b, c)[source]

Realization-independent tangential Hermite interpolation.

Parameters

sigma

Interpolation points (closed under conjugation), sequence of length r.

b

Right tangential directions, NumPy array of shape (r, fom.dim_input).

c

Left tangential directions, NumPy array of shape (r, fom.dim_output).

Returns

lti

The reduced-order LTIModel interpolating the transfer function of fom.