pymor.analyticalproblems.burgers
¶
Module Contents¶
- pymor.analyticalproblems.burgers.burgers_problem(v=1.0, circle=True, initial_data_type='sin', parameter_range=(1.0, 2.0))[source]¶
One-dimensional Burgers-type problem.
The problem is to solve
∂_t u(x, t, μ) + ∂_x (v * u(x, t, μ)^μ) = 0 u(x, 0, μ) = u_0(x)
for u with t in [0, 0.3] and x in [0, 2].
Parameters
- v
The velocity v.
- circle
If
True
, impose periodic boundary conditions. Otherwise Dirichlet left, outflow right.- initial_data_type
Type of initial data (
'sin'
or'bump'
).- parameter_range
The interval in which μ is allowed to vary.
- pymor.analyticalproblems.burgers.burgers_problem_2d(vx=1.0, vy=1.0, torus=True, initial_data_type='sin', parameter_range=(1.0, 2.0))[source]¶
Two-dimensional Burgers-type problem.
The problem is to solve
∂_t u(x, t, μ) + ∇ ⋅ (v * u(x, t, μ)^μ) = 0 u(x, 0, μ) = u_0(x)
for u with t in [0, 0.3], x in [0, 2] x [0, 1].
Parameters
- vx
The x component of the velocity vector v.
- vy
The y component of the velocity vector v.
- torus
If
True
, impose periodic boundary conditions. Otherwise, Dirichlet left and bottom, outflow top and right.- initial_data_type
Type of initial data (
'sin'
or'bump'
).- parameter_range
The interval in which μ is allowed to vary.