# `pymor.algorithms.lincomb`¶

## Module Contents¶

class pymor.algorithms.lincomb.AssembleLincombRules(coefficients, solver_options, name)[source]

`RuleTable` for the `assemble_lincomb` algorithm.

Parameters

coefficients

Tuple of coefficients.

solver_options

`solver_options` for the assembled operator.

name

Name of the assembled operator.

action_BlockDiagonalOperator(ops)[source]
action_BlockOperatorBase(ops)[source]
action_BlockSpaceIdentityOperator(ops)[source]
action_IdentityOperator(ops)[source]
action_SecondOrderModelOperator(ops)[source]
action_VectorArrayOperator(ops)[source]
action_ZeroOperator(ops)[source]
action_call_assemble_lincomb_method(ops)[source]
action_merge_into_low_rank_updated_operator(ops)[source]
action_merge_low_rank_operators(ops)[source]
action_return_lincomb(ops)[source]
action_zero_coeff(ops)[source]
pymor.algorithms.lincomb.assemble_lincomb(operators, coefficients, solver_options=None, name=None)[source]

Try to assemble a linear combination of the given operators.

Returns a new `Operator` which represents the sum

```c_1*O_1 + ... + c_N*O_N
```

where `O_i` are `Operators` and `c_i` scalar coefficients.

This function is called in the `assemble` method of `LincombOperator` and is not intended to be used directly.

To form the linear combination of backend `Operators` (containing actual matrix data), `_assemble_lincomb` will be called on the first `Operator` in the linear combination.

Parameters

operators

List of `Operators` `O_i` whose linear combination is formed.

coefficients

List of the corresponding linear coefficients `c_i`.

solver_options

`solver_options` for the assembled operator.

name

Name of the assembled operator.

Returns

The assembled `Operator`.