#!/usr/bin/env python
# This file is part of the pyMOR project (http://www.pymor.org).
# Copyright 2013-2020 pyMOR developers and contributors. All rights reserved.
# License: BSD 2-Clause License (http://opensource.org/licenses/BSD-2-Clause)
import sys
import time
import numpy as np
import matplotlib.pyplot as plt
from typer import Argument, Option, Typer
from pymor.core.pickle import load
app = Typer(help='''
This demo loads a pickled reduced model, solves for random
parameters, estimates the reduction errors and then visualizes these
estimates. If the detailed model and the reductor are
also provided, the estimated error is visualized in comparison to
the real reduction error.
The needed data files are created by the thermal block demo, by
setting the '--pickle' option.
'''[1:])
REDUCED_DATA = Argument(..., help='File containing the pickled reduced model.')
SAMPLES = Argument(..., min=1, help='Number of parameter samples to test with. ')
ERROR_NORM = Option(None, help='Name of norm in which to compute the errors.')
[docs]@app.command()
def histogram(
reduced_data: str = REDUCED_DATA,
samples: int = SAMPLES,
detailed_data: str = Option(None, help='File containing the high-dimensional model and the reductor.'),
error_norm: str = ERROR_NORM
):
print('Loading reduced model ...')
rom, parameter_space = load(open(reduced_data, 'rb'))
mus = parameter_space.sample_randomly(samples)
us = []
for mu in mus:
print(f'Solving reduced for {mu} ... ', end='')
sys.stdout.flush()
us.append(rom.solve(mu))
print('done')
print()
if hasattr(rom, 'estimate'):
ests = []
for mu in mus:
print(f'Estimating error for {mu} ... ', end='')
sys.stdout.flush()
ests.append(rom.estimate_error(mu))
print('done')
if detailed_data:
print('Loading high-dimensional data ...')
fom, reductor = load(open(detailed_data, 'rb'))
errs = []
for u, mu in zip(us, mus):
print(f'Calculating error for {mu} ... ')
sys.stdout.flush()
err = fom.solve(mu) - reductor.reconstruct(u)
if error_norm:
errs.append(np.max(getattr(fom, error_norm + '_norm')(err)))
else:
errs.append(np.max(err.norm()))
print('done')
print()
try:
plt.style.use('ggplot')
except AttributeError:
pass # plt.style is only available in newer matplotlib versions
if hasattr(rom, 'estimate') and detailed_data:
# setup axes
left, width = 0.1, 0.65
bottom, height = 0.1, 0.65
bottom_h = left_h = left+width+0.02
rect_scatter = [left, bottom, width, height]
rect_histx = [left, bottom_h, width, 0.2]
rect_histy = [left_h, bottom, 0.2, height]
plt.figure(1, figsize=(8, 8))
axScatter = plt.axes(rect_scatter)
axHistx = plt.axes(rect_histx)
axHisty = plt.axes(rect_histy)
# scatter plot
total_min = min(np.min(ests), np.min(errs)) * 0.9
total_max = max(np.max(ests), np.max(errs)) * 1.1
axScatter.set_xscale('log')
axScatter.set_yscale('log')
axScatter.set_xlim([total_min, total_max])
axScatter.set_ylim([total_min, total_max])
axScatter.set_xlabel('errors')
axScatter.set_ylabel('estimates')
axScatter.plot([total_min, total_max], [total_min, total_max], 'r')
axScatter.scatter(errs, ests)
# plot histograms
x_hist, x_bin_edges = np.histogram(errs, bins=_bins(total_min, total_max))
axHistx.bar(x_bin_edges[1:], x_hist, width=x_bin_edges[:-1] - x_bin_edges[1:], color='blue')
y_hist, y_bin_edges = np.histogram(ests, bins=_bins(total_min, total_max))
axHisty.barh(y_bin_edges[1:], y_hist, height=y_bin_edges[:-1] - y_bin_edges[1:], color='blue')
axHistx.set_xscale('log')
axHisty.set_yscale('log')
axHistx.set_xticklabels([])
axHisty.set_yticklabels([])
axHistx.set_xlim(axScatter.get_xlim())
axHisty.set_ylim(axScatter.get_ylim())
axHistx.set_ylim([0, max(np.max(x_hist), np.max(y_hist))])
axHisty.set_xlim([0, max(np.max(x_hist), np.max(y_hist))])
plt.show()
elif hasattr(rom, 'estimate'):
total_min = np.min(ests) * 0.9
total_max = np.max(ests) * 1.1
hist, bin_edges = np.histogram(ests, bins=_bins(total_min, total_max))
plt.bar(bin_edges[1:], hist, width=bin_edges[:-1] - bin_edges[1:], color='blue')
plt.xlim([total_min, total_max])
plt.xscale('log')
plt.xlabel('estimated error')
plt.show()
elif detailed_data:
total_min = np.min(ests) * 0.9
total_max = np.max(ests) * 1.1
hist, bin_edges = np.histogram(errs, bins=_bins(total_min, total_max))
plt.bar(bin_edges[1:], hist, width=bin_edges[:-1] - bin_edges[1:], color='blue')
plt.xlim([total_min, total_max])
plt.xscale('log')
plt.xlabel('error')
plt.show()
else:
raise ValueError('Nothing to plot!')
[docs]@app.command()
def convergence(
reduced_data: str = REDUCED_DATA,
detailed_data: str = Argument(..., help='File containing the high-dimensional model and the reductor.'),
samples: int = SAMPLES,
error_norm: str = ERROR_NORM,
ndim: int = Option(None, help='Number of reduced basis dimensions for which to estimate the error.')
):
print('Loading reduced model ...')
rom, parameter_space = load(open(reduced_data, 'rb'))
print('Loading high-dimensional data ...')
fom, reductor = load(open(detailed_data, 'rb'))
fom.enable_caching('disk')
dim = rom.solution_space.dim
if ndim:
dims = np.linspace(0, dim, ndim, dtype=np.int)
else:
dims = np.arange(dim + 1)
mus = parameter_space.sample_randomly(samples)
ESTS = []
ERRS = []
T_SOLVES = []
T_ESTS = []
for N in dims:
rom = reductor.reduce(N)
print(f'N = {N:3} ', end='')
us = []
print('solve ', end='')
sys.stdout.flush()
start = time.perf_counter()
for mu in mus:
us.append(rom.solve(mu))
T_SOLVES.append((time.perf_counter() - start) * 1000. / len(mus))
print('estimate ', end='')
sys.stdout.flush()
if hasattr(rom, 'estimate'):
ests = []
start = time.perf_counter()
for mu in mus:
# print('e', end='')
# sys.stdout.flush()
ests.append(rom.estimate_error(mu))
ESTS.append(max(ests))
T_ESTS.append((time.perf_counter() - start) * 1000. / len(mus))
print('errors', end='')
sys.stdout.flush()
errs = []
for u, mu in zip(us, mus):
err = fom.solve(mu) - reductor.reconstruct(u)
if error_norm:
errs.append(np.max(getattr(fom, error_norm + '_norm')(err)))
else:
errs.append(np.max(err.norm()))
ERRS.append(max(errs))
print()
print()
try:
plt.style.use('ggplot')
except AttributeError:
pass # plt.style is only available in newer matplotlib versions
plt.subplot(1, 2, 1)
if hasattr(rom, 'estimate'):
plt.semilogy(dims, ESTS, label='max. estimate')
plt.semilogy(dims, ERRS, label='max. error')
plt.xlabel('dimension')
plt.legend()
plt.subplot(1, 2, 2)
plt.plot(dims, T_SOLVES, label='avg. solve time')
if hasattr(rom, 'estimate'):
plt.plot(dims, T_ESTS, label='avg. estimate time')
plt.xlabel('dimension')
plt.ylabel('milliseconds')
plt.legend()
plt.show()
[docs]def _bins(start, stop, steps=100):
''' numpy has a quirk in unreleased master where logspace
might sometimes not return a 1d array
'''
bins = np.logspace(np.log10(start), np.log10(stop), steps)
if bins.shape == (steps, 1):
bins = bins[:, 0]
return bins
if __name__ == '__main__':
app()