Source code for pymordemos.parabolic

#!/usr/bin/env python
# This file is part of the pyMOR project (http://www.pymor.org).
# Copyright 2013-2020 pyMOR developers and contributors. All rights reserved.
# License: BSD 2-Clause License (http://opensource.org/licenses/BSD-2-Clause)

import numpy as np
from typer import Argument, Option, Typer

from pymor.basic import *


app = Typer(help="Solve parabolic equations using pyMOR's builtin discretization toolkit.")
FV = Option(False, help='Use finite volume discretization instead of finite elements.')
GRID = Option(100, help='Use grid with NIxNI intervals.')
NT = Option(100, help='Number of time steps.')
RECT = Option(False, help='Use RectGrid instead of TriaGrid.')


[docs]@app.command() def heat( top: float = Argument(..., help='The heat diffusion coefficient for the top bars.'), fv: bool = FV, grid: int = GRID, nt: int = NT, rect: bool = RECT, ): problem = InstationaryProblem( StationaryProblem( domain=RectDomain(top='dirichlet', bottom='neumann'), diffusion=LincombFunction( [ConstantFunction(1., dim_domain=2), ExpressionFunction('(x[..., 0] > 0.45) * (x[..., 0] < 0.55) * (x[..., 1] < 0.7) * 1.', dim_domain=2), ExpressionFunction('(x[..., 0] > 0.35) * (x[..., 0] < 0.40) * (x[..., 1] > 0.3) * 1. + ' '(x[..., 0] > 0.60) * (x[..., 0] < 0.65) * (x[..., 1] > 0.3) * 1.', dim_domain=2)], [1., 100. - 1., ExpressionParameterFunctional('top - 1.', {'top': 1})] ), rhs=ConstantFunction(value=0., dim_domain=2), dirichlet_data=ConstantFunction(value=0., dim_domain=2), neumann_data=ExpressionFunction('(x[..., 0] > 0.45) * (x[..., 0] < 0.55) * -1000.', dim_domain=2), ), T=1., initial_data=ExpressionFunction('(x[..., 0] > 0.45) * (x[..., 0] < 0.55) * (x[..., 1] < 0.7) * 10.', dim_domain=2) ) mu = {'top': top} solve(problem, mu, fv, rect, grid, nt)
[docs]@app.command() def dar( speed: float = Argument(..., help='The advection speed.'), fv: bool = FV, grid: int = GRID, nt: int = NT, rect: bool = RECT, ): problem = InstationaryProblem( StationaryProblem( domain=RectDomain(), diffusion=ConstantFunction(0.01, dim_domain=2), advection=LincombFunction([ConstantFunction(np.array([-1., 0]), dim_domain=2)], [ProjectionParameterFunctional('speed')]), reaction=ConstantFunction(0.5, dim_domain=2), rhs=ExpressionFunction('(x[..., 0] > 0.3) * (x[..., 0] < 0.7) * (x[..., 1] > 0.3)*(x[...,1]<0.7) * 0.', dim_domain=2), dirichlet_data=ConstantFunction(value=0., dim_domain=2), ), T=1., initial_data=ExpressionFunction('(x[..., 0] > 0.3) * (x[..., 0] < 0.7) * (x[...,1]>0.3) * (x[..., 1] < 0.7) * 10.', dim_domain=2), ) mu = {'speed': speed} solve(problem, mu, fv, rect, grid, nt)
[docs]def solve(problem, mu, fv, rect, grid, nt): print('Discretize ...') discretizer = discretize_instationary_fv if fv else discretize_instationary_cg m, data = discretizer( analytical_problem=problem, grid_type=RectGrid if rect else TriaGrid, diameter=np.sqrt(2) / grid if rect else 1. / grid, nt=nt ) grid = data['grid'] print(grid) print() print('Solve ...') U = m.solve(mu) m.visualize(U, title='Solution') print('')
if __name__ == '__main__': app()