# This file is part of the pyMOR project (http://www.pymor.org).
# Copyright 2013-2020 pyMOR developers and contributors. All rights reserved.
# License: BSD 2-Clause License (http://opensource.org/licenses/BSD-2-Clause)
from pymor.algorithms.gram_schmidt import gram_schmidt
from pymor.algorithms.rules import RuleTable, match_class, match_generic
from pymor.core.exceptions import ImageCollectionError, NoMatchingRuleError
from pymor.core.logger import getLogger
from pymor.operators.constructions import Concatenation, LincombOperator, SelectionOperator
from pymor.operators.ei import EmpiricalInterpolatedOperator
from pymor.operators.interface import Operator
from pymor.vectorarrays.interface import VectorArray
from pymor.vectorarrays.numpy import NumpyVectorSpace
[docs]def estimate_image(operators=(), vectors=(),
domain=None, extends=False, orthonormalize=True, product=None,
riesz_representatives=False):
"""Estimate the image of given |Operators| for all mu.
Let `operators` be a list of |Operators| with common source and range, and let
`vectors` be a list of |VectorArrays| or vector-like |Operators| in the range
of these operators. Given a |VectorArray| `domain` of vectors in the source of the
operators, this algorithms determines a |VectorArray| `image` of range vectors
such that the linear span of `image` contains:
- `op.apply(U, mu=mu)` for all operators `op` in `operators`, for all possible |Parameters|
`mu` and for all |VectorArrays| `U` contained in the linear span of `domain`,
- `U` for all |VectorArrays| in `vectors`,
- `v.as_range_array(mu)` for all |Operators| in `vectors` and all possible |Parameters| `mu`.
The algorithm will try to choose `image` as small as possible. However, no optimality
is guaranteed. The image estimation algorithm is specified by :class:`CollectOperatorRangeRules`
and :class:`CollectVectorRangeRules`.
Parameters
----------
operators
See above.
vectors
See above.
domain
See above. If `None`, an empty `domain` |VectorArray| is assumed.
extends
For some operators, e.g. |EmpiricalInterpolatedOperator|, as well as for all
elements of `vectors`, `image` is estimated independently from the choice of
`domain`. If `extends` is `True`, such operators are ignored. (This is useful
in case these vectors have already been obtained by earlier calls to this
function.)
orthonormalize
Compute an orthonormal basis for the linear span of `image` using the
:func:`~pymor.algorithms.gram_schmidt.gram_schmidt` algorithm.
product
Inner product |Operator| w.r.t. which to orthonormalize.
riesz_representatives
If `True`, compute Riesz representatives of the vectors in `image` before
orthonormalizing (useful for dual norm computation when the range of the
`operators` is a dual space).
Returns
-------
The |VectorArray| `image`.
Raises
------
ImageCollectionError
Is raised when for a given |Operator| no image estimate is possible.
"""
assert operators or vectors
domain_space = operators[0].source if operators else None
image_space = operators[0].range if operators \
else vectors[0].space if isinstance(vectors[0], VectorArray) \
else vectors[0].range
assert all(op.source == domain_space and op.range == image_space for op in operators)
assert all(
isinstance(v, VectorArray) and (
v in image_space
)
or isinstance(v, Operator) and (
v.range == image_space and isinstance(v.source, NumpyVectorSpace) and v.linear
)
for v in vectors
)
assert domain is None or domain_space is None or domain in domain_space
assert product is None or product.source == product.range == image_space
image = image_space.empty()
if not extends:
rules = CollectVectorRangeRules(image)
for v in vectors:
try:
rules.apply(v)
except NoMatchingRuleError as e:
raise ImageCollectionError(e.obj)
if operators and domain is None:
domain = domain_space.empty()
for op in operators:
rules = CollectOperatorRangeRules(domain, image, extends)
try:
rules.apply(op)
except NoMatchingRuleError as e:
raise ImageCollectionError(e.obj)
if riesz_representatives and product:
image = product.apply_inverse(image)
if orthonormalize:
gram_schmidt(image, product=product, copy=False)
return image
[docs]def estimate_image_hierarchical(operators=(), vectors=(), domain=None, extends=None,
orthonormalize=True, product=None, riesz_representatives=False):
"""Estimate the image of given |Operators| for all mu.
This is an extended version of :func:`estimate_image`, which calls
:func:`estimate_image` individually for each vector of `domain`.
As a result, the vectors in the returned `image` |VectorArray| will
be ordered by the `domain` vector they correspond to (starting with
vectors which correspond to the elements of `vectors` and to |Operators|
for which the image is estimated independently from `domain`).
This function also returns an `image_dims` list, such that the first
`image_dims[i+1]` vectors of `image` correspond to the first `i`
vectors of `domain` (the first `image_dims[0]` vectors correspond
to `vectors` and to |Operators| with fixed image estimate).
Parameters
----------
operators
See :func:`estimate_image`.
vectors
See :func:`estimate_image`.
domain
See :func:`estimate_image`.
extends
When additional vectors have been appended to the `domain` |VectorArray|
after :func:`estimate_image_hierarchical` has been called, and
:func:`estimate_image_hierarchical` shall be called again for the extended
`domain` array, `extends` can be set to `(image, image_dims)`, where
`image`, `image_dims` are the return values of the last
:func:`estimate_image_hierarchical` call. The old `domain` vectors will
then be skipped during computation and `image`, `image_dims` will be
modified in-place.
orthonormalize
See :func:`estimate_image`.
product
See :func:`estimate_image`.
riesz_representatives
See :func:`estimate_image`.
Returns
-------
image
See above.
image_dims
See above.
Raises
------
ImageCollectionError
Is raised when for a given |Operator| no image estimate is possible.
"""
assert operators or vectors
domain_space = operators[0].source if operators else None
image_space = operators[0].range if operators \
else vectors[0].space if isinstance(vectors[0], VectorArray) \
else vectors[0].range
assert all(op.source == domain_space and op.range == image_space for op in operators)
assert all(
isinstance(v, VectorArray) and (
v in image_space
)
or isinstance(v, Operator) and (
v.range == image_space and isinstance(v.source, NumpyVectorSpace) and v.linear
)
for v in vectors
)
assert domain is None or domain_space is None or domain in domain_space
assert product is None or product.source == product.range == image_space
assert extends is None or len(extends) == 2
logger = getLogger('pymor.algorithms.image.estimate_image_hierarchical')
if operators and domain is None:
domain = domain_space.empty()
if extends:
image = extends[0]
image_dims = extends[1]
ind_range = range(len(image_dims) - 1, len(domain)) if operators else range(len(image_dims) - 1, 0)
else:
image = image_space.empty()
image_dims = []
ind_range = range(-1, len(domain)) if operators else [-1]
for i in ind_range:
logger.info(f'Estimating image for basis vector {i} ...')
if i == -1:
new_image = estimate_image(operators, vectors, None, extends=False,
orthonormalize=False, product=product,
riesz_representatives=riesz_representatives)
else:
new_image = estimate_image(operators, [], domain[i], extends=True,
orthonormalize=False, product=product,
riesz_representatives=riesz_representatives)
gram_schmidt_offset = len(image)
image.append(new_image, remove_from_other=True)
if orthonormalize:
with logger.block('Orthonormalizing ...'):
gram_schmidt(image, offset=gram_schmidt_offset, product=product, copy=False)
image_dims.append(len(image))
return image, image_dims
[docs]class CollectOperatorRangeRules(RuleTable):
"""|RuleTable| for the :func:`estimate_image` algorithm."""
def __init__(self, source, image, extends):
super().__init__(use_caching=True)
self.__auto_init(locals())
@match_generic(lambda op: op.linear and not op.parametric)
def action_apply_operator(self, op):
self.image.append(op.apply(self.source))
@match_class(LincombOperator, SelectionOperator)
def action_recurse(self, op):
self.apply_children(op)
@match_class(EmpiricalInterpolatedOperator)
def action_EmpiricalInterpolatedOperator(self, op):
if hasattr(op, 'collateral_basis') and not self.extends:
self.image.append(op.collateral_basis)
@match_class(Concatenation)
def action_Concatenation(self, op):
if len(op.operators) == 1:
self.apply(op.operators[0])
else:
firstrange = op.operators[-1].range.empty()
type(self)(self.source, firstrange, self.extends).apply(op.operators[-1])
type(self)(firstrange, self.image, self.extends).apply(op.with_(operators=op.operators[:-1]))
[docs]class CollectVectorRangeRules(RuleTable):
"""|RuleTable| for the :func:`estimate_image` algorithm."""
def __init__(self, image):
super().__init__(use_caching=True)
self.image = image
@match_class(VectorArray)
def action_VectorArray(self, obj):
self.image.append(obj)
@match_generic(lambda op: op.linear and not op.parametric)
def action_as_range_array(self, op):
self.image.append(op.as_range_array())
@match_class(LincombOperator, SelectionOperator)
def action_recurse(self, op):
self.apply_children(op)
@match_class(Concatenation)
def action_Concatenation(self, op):
if len(op.operators) == 1:
self.apply(op.operators[0])
else:
firstrange = op.operators[-1].range.empty()
CollectVectorRangeRules(firstrange).apply(op.operators[-1])
CollectOperatorRangeRules(firstrange, self.image, False).apply(op.with_(operators=op.operators[:-1]))