# This file is part of the pyMOR project (http://www.pymor.org).
# Copyright 2013-2020 pyMOR developers and contributors. All rights reserved.
# License: BSD 2-Clause License (http://opensource.org/licenses/BSD-2-Clause)
import numpy as np
from pymor.analyticalproblems.elliptic import StationaryProblem
from pymor.analyticalproblems.domaindescriptions import LineDomain, RectDomain, TorusDomain, CircleDomain
from pymor.analyticalproblems.instationary import InstationaryProblem
from pymor.analyticalproblems.functions import ConstantFunction, ExpressionFunction
[docs]def burgers_problem(v=1., circle=True, initial_data_type='sin', parameter_range=(1., 2.)):
"""One-dimensional Burgers-type problem.
The problem is to solve ::
∂_t u(x, t, μ) + ∂_x (v * u(x, t, μ)^μ) = 0
u(x, 0, μ) = u_0(x)
for u with t in [0, 0.3] and x in [0, 2].
Parameters
----------
v
The velocity v.
circle
If `True`, impose periodic boundary conditions. Otherwise Dirichlet left,
outflow right.
initial_data_type
Type of initial data (`'sin'` or `'bump'`).
parameter_range
The interval in which μ is allowed to vary.
"""
assert initial_data_type in ('sin', 'bump')
if initial_data_type == 'sin':
initial_data = ExpressionFunction('0.5 * (sin(2 * pi * x) + 1.)', 1, ())
dirichlet_data = ConstantFunction(dim_domain=1, value=0.5)
else:
initial_data = ExpressionFunction('(x >= 0.5) * (x <= 1) * 1.', 1, ())
dirichlet_data = ConstantFunction(dim_domain=1, value=0.)
return InstationaryProblem(
StationaryProblem(
domain=CircleDomain([0, 2]) if circle else LineDomain([0, 2], right=None),
dirichlet_data=dirichlet_data,
rhs=None,
nonlinear_advection=ExpressionFunction('abs(x)**exponent[0] * v',
1, (1,), {'exponent': 1}, {'v': v}),
nonlinear_advection_derivative=ExpressionFunction('exponent * abs(x)**(exponent[0]-1) * sign(x) * v',
1, (1,), {'exponent': 1}, {'v': v}),
),
T=0.3,
initial_data=initial_data,
parameter_ranges={'exponent': parameter_range},
name=f"burgers_problem({v}, {circle}, '{initial_data_type}')"
)
[docs]def burgers_problem_2d(vx=1., vy=1., torus=True, initial_data_type='sin', parameter_range=(1., 2.)):
"""Two-dimensional Burgers-type problem.
The problem is to solve ::
∂_t u(x, t, μ) + ∇ ⋅ (v * u(x, t, μ)^μ) = 0
u(x, 0, μ) = u_0(x)
for u with t in [0, 0.3], x in [0, 2] x [0, 1].
Parameters
----------
vx
The x component of the velocity vector v.
vy
The y component of the velocity vector v.
torus
If `True`, impose periodic boundary conditions. Otherwise,
Dirichlet left and bottom, outflow top and right.
initial_data_type
Type of initial data (`'sin'` or `'bump'`).
parameter_range
The interval in which μ is allowed to vary.
"""
assert initial_data_type in ('sin', 'bump')
if initial_data_type == 'sin':
initial_data = ExpressionFunction("0.5 * (sin(2 * pi * x[..., 0]) * sin(2 * pi * x[..., 1]) + 1.)", 2, ())
dirichlet_data = ConstantFunction(dim_domain=2, value=0.5)
else:
initial_data = ExpressionFunction("(x[..., 0] >= 0.5) * (x[..., 0] <= 1) * 1", 2, ())
dirichlet_data = ConstantFunction(dim_domain=2, value=0.)
return InstationaryProblem(
StationaryProblem(
domain=TorusDomain([[0, 0], [2, 1]]) if torus else RectDomain([[0, 0], [2, 1]], right=None, top=None),
dirichlet_data=dirichlet_data,
rhs=None,
nonlinear_advection=ExpressionFunction("abs(x)**exponent * v",
1, (2,), {'exponent': 1}, {'v': np.array([vx, vy])}),
nonlinear_advection_derivative=ExpressionFunction("exponent * abs(x)**(exponent-1) * sign(x) * v",
1, (2,), {'exponent': 1}, {'v': np.array([vx, vy])}),
),
initial_data=initial_data,
T=0.3,
parameter_ranges=parameter_range,
name=f"burgers_problem_2d({vx}, {vy}, {torus}, '{initial_data_type}')"
)