# This file is part of the pyMOR project (http://www.pymor.org).
# Copyright 2013-2020 pyMOR developers and contributors. All rights reserved.
# License: BSD 2-Clause License (http://opensource.org/licenses/BSD-2-Clause)
import numpy as np
from pymor.parameters.base import ParametricObject, ParameterSpace
from pymor.tools.frozendict import FrozenDict
[docs]class StationaryProblem(ParametricObject):
"""Linear elliptic problem description.
The problem consists in solving ::
- ∇ ⋅ [d(x, μ) ∇ u(x, μ)] + ∇ ⋅ [f(x, u(x, μ), μ)] + c(x, u(x, μ), μ) = f(x, μ)
for u.
Parameters
----------
domain
A |DomainDescription| of the domain the problem is posed on.
rhs
The |Function| f(x, μ). `rhs.dim_domain` has to agree with the
dimension of `domain`, whereas `rhs.shape_range` has to be `()`.
diffusion
The |Function| d(x, μ) with `shape_range` of either `()` or
`(dim domain, dim domain)`.
advection
The |Function| f, only depending on x, with `shape_range` of `(dim domain,)`.
nonlinear_advection
The |Function| f, only depending on u, with `shape_range` of `(dim domain,)`.
nonlinear_advection_derivative
The derivative of f, only depending on u, with respect to u.
reaction
The |Function| c, only depending on x, with `shape_range` of `()`.
nonlinear_reaction
The |Function| c, only depending on u, with `shape_range` of `()`.
nonlinear_reaction_derivative
The derivative of the |Function| c, only depending on u, with `shape_range` of `()`.
dirichlet_data
|Function| providing the Dirichlet boundary values.
neumann_data
|Function| providing the Neumann boundary values.
robin_data
Tuple of two |Functions| providing the Robin parameter and boundary values.
outputs
Tuple of additional output functionals to assemble. Each value must be a tuple
of the form `(functional_type, data)` where `functional_type` is a string
defining the type of functional to assemble and `data` is a |Function| holding
the corresponding coefficient function. Currently implemented `functional_types`
are:
:l2: Evaluate the l2-product with the given data function.
:l2_boundary: Evaluate the l2-product with the given data function
on the boundary.
parameter_ranges
Ranges of interest for the |Parameters| of the problem.
name
Name of the problem.
Attributes
----------
domain
rhs
diffusion
advection
nonlinear_advection
nonlinear_advection_derivative
reaction
nonlinear_reaction
nonlinear_reaction_derivative
dirichlet_data
neumann_data
robin_data
outputs
"""
def __init__(self, domain,
rhs=None, diffusion=None,
advection=None, nonlinear_advection=None, nonlinear_advection_derivative=None,
reaction=None, nonlinear_reaction=None, nonlinear_reaction_derivative=None,
dirichlet_data=None, neumann_data=None, robin_data=None, outputs=None,
parameter_ranges=None, name=None):
assert (rhs is None
or rhs.dim_domain == domain.dim and rhs.shape_range == ())
assert (diffusion is None
or diffusion.dim_domain == domain.dim and diffusion.shape_range in ((), (domain.dim, domain.dim)))
assert (advection is None
or advection.dim_domain == domain.dim and advection.shape_range == (domain.dim,))
assert (nonlinear_advection is None
or nonlinear_advection.dim_domain == 1 and nonlinear_advection.shape_range == (domain.dim,))
assert (nonlinear_advection_derivative is None
or (nonlinear_advection_derivative.dim_domain == 1
and nonlinear_advection_derivative.shape_range == (domain.dim,)))
assert (reaction is None
or reaction.dim_domain == domain.dim and reaction.shape_range == ())
assert (nonlinear_reaction is None
or nonlinear_reaction.dim_domain == 1 and nonlinear_reaction.shape_range == ())
assert (nonlinear_reaction_derivative is None
or nonlinear_reaction_derivative.dim_domain == 1 and nonlinear_reaction_derivative.shape_range == ())
assert (dirichlet_data is None
or dirichlet_data.dim_domain == domain.dim and dirichlet_data.shape_range == ())
assert (neumann_data is None
or neumann_data.dim_domain == domain.dim and neumann_data.shape_range == ())
assert (robin_data is None
or (isinstance(robin_data, tuple) and len(robin_data) == 2
and np.all([f.dim_domain == domain.dim and f.shape_range == () for f in robin_data])))
assert (outputs is None
or all(isinstance(v, tuple) and len(v) == 2 and v[0] in ('l2', 'l2_boundary')
and v[1].dim_domain == domain.dim and v[1].shape_range == () for v in outputs))
assert (parameter_ranges is None
or (isinstance(parameter_ranges, (list, tuple))
and len(parameter_ranges) == 2
and parameter_ranges[0] <= parameter_ranges[1])
or (isinstance(parameter_ranges, dict)
and all(isinstance(v, (list, tuple)) and len(v) == 2 and v[0] <= v[1]
for v in parameter_ranges.values())))
outputs = tuple(outputs) if outputs is not None else None
parameter_ranges = (
None if parameter_ranges is None else
tuple(parameter_ranges) if isinstance(parameter_ranges, (list, tuple)) else
FrozenDict((k, tuple(v)) for k, v in parameter_ranges.items())
)
self.__auto_init(locals())
@property
def parameter_space(self):
if self.parameter_ranges is None:
return None
else:
return ParameterSpace(self.parameters, self.parameter_ranges)