Source code for pymor.discretizers.builtin.grids.tria

# This file is part of the pyMOR project (http://www.pymor.org).
# Copyright 2013-2020 pyMOR developers and contributors. All rights reserved.
# License: BSD 2-Clause License (http://opensource.org/licenses/BSD-2-Clause)

import numpy as np

from pymor.core.cache import cached
from pymor.discretizers.builtin.grids.interfaces import AffineGridWithOrthogonalCenters
from pymor.discretizers.builtin.grids.referenceelements import triangle


[docs]class TriaGrid(AffineGridWithOrthogonalCenters): r"""Basic implementation of a triangular grid on a rectangular domain. The global face, edge and vertex indices are given as follows :: 6---------10----------7---------11----------8 | \ / | \ / | | 22 10 18 | 23 11 19 | | \ / | \ / | 3 14 11 6 4 15 12 7 5 | / \ | / \ | | 14 2 26 | 15 3 27 | | / \ | / \ | 3----------8----------4----------9----------5 | \ / | \ / | | 20 8 16 | 21 9 17 | | \ / | \ / | 0 12 9 4 1 13 10 5 2 | / \ | / \ | | 12 0 24 | 13 1 25 | | / \ | / \ | 0----------6----------1----------7----------2 Parameters ---------- num_intervals Tuple `(n0, n1)` determining a grid with `n0` x `n1` codim-0 entities. domain Tuple `(ll, ur)` where `ll` defines the lower left and `ur` the upper right corner of the domain. identify_left_right If `True`, the left and right boundaries are identified, i.e. the left-most codim-0 entities become neighbors of the right-most codim-0 entities. identify_bottom_top If `True`, the bottom and top boundaries are identified, i.e. the bottom-most codim-0 entities become neighbors of the top-most codim-0 entities. """ dim = 2 reference_element = triangle def __init__(self, num_intervals=(2, 2), domain=([0, 0], [1, 1]), identify_left_right=False, identify_bottom_top=False): if identify_left_right: assert num_intervals[0] > 1 if identify_bottom_top: assert num_intervals[1] > 1 domain = np.array(domain) self.__auto_init(locals()) self.x0_num_intervals = x0_num_intervals = num_intervals[0] self.x1_num_intervals = x1_num_intervals = num_intervals[1] self.x0_range = self.domain[:, 0] self.x1_range = self.domain[:, 1] self.x0_width = self.x0_range[1] - self.x0_range[0] self.x1_width = self.x1_range[1] - self.x1_range[0] self.x0_diameter = self.x0_width / x0_num_intervals self.x1_diameter = self.x1_width / x1_num_intervals n_elements = x0_num_intervals * x1_num_intervals * 4 # TOPOLOGY n_outer_vertices = (x0_num_intervals + 1 - identify_left_right) * (x1_num_intervals + 1 - identify_bottom_top) self.__sizes = (n_elements, ((x0_num_intervals + 1 - identify_left_right) * x1_num_intervals + (x1_num_intervals + 1 - identify_bottom_top) * x0_num_intervals + n_elements), n_outer_vertices + int(n_elements / 4)) # calculate subentities -- codim-1 V_EDGE_H_INDICES = np.arange(x0_num_intervals + 1, dtype=np.int32) if identify_left_right: V_EDGE_H_INDICES[-1] = 0 V_EDGE_V_INDICES = np.arange(x1_num_intervals, dtype=np.int32) * (x0_num_intervals + 1 - identify_left_right) V_EDGE_INDICES = V_EDGE_V_INDICES[:, np.newaxis] + V_EDGE_H_INDICES num_v_edges = x1_num_intervals * (x0_num_intervals + 1 - identify_left_right) H_EDGE_H_INDICES = np.arange(x0_num_intervals, dtype=np.int32) H_EDGE_V_INDICES = np.arange(x1_num_intervals + 1, dtype=np.int32) if identify_bottom_top: H_EDGE_V_INDICES[-1] = 0 H_EDGE_V_INDICES *= x0_num_intervals H_EDGE_INDICES = H_EDGE_V_INDICES[:, np.newaxis] + H_EDGE_H_INDICES + num_v_edges num_h_edges = x0_num_intervals * (x1_num_intervals + 1 - identify_bottom_top) D_EDGE_LL_INDICES = np.arange(n_elements / 4, dtype=np.int32) + (num_v_edges + num_h_edges) D_EDGE_UR_INDICES = D_EDGE_LL_INDICES + int(n_elements / 4) D_EDGE_UL_INDICES = D_EDGE_UR_INDICES + int(n_elements / 4) D_EDGE_LR_INDICES = D_EDGE_UL_INDICES + int(n_elements / 4) E0 = np.array([H_EDGE_INDICES[:-1, :].ravel(), D_EDGE_LR_INDICES, D_EDGE_LL_INDICES]).T E1 = np.array([V_EDGE_INDICES[:, 1:].ravel(), D_EDGE_UR_INDICES, D_EDGE_LR_INDICES]).T E2 = np.array([H_EDGE_INDICES[1:, :].ravel(), D_EDGE_UL_INDICES, D_EDGE_UR_INDICES]).T E3 = np.array([V_EDGE_INDICES[:, :-1].ravel(), D_EDGE_LL_INDICES, D_EDGE_UL_INDICES]).T codim1_subentities = np.vstack((E0, E1, E2, E3)) # calculate subentities -- codim-2 VERTEX_H_INDICES = np.arange(x0_num_intervals + 1, dtype=np.int32) if identify_left_right: VERTEX_H_INDICES[-1] = 0 VERTEX_V_INDICES = np.arange(x1_num_intervals + 1, dtype=np.int32) if identify_bottom_top: VERTEX_V_INDICES[-1] = 0 VERTEX_V_INDICES *= x0_num_intervals + 1 - identify_left_right VERTEX_NUMERS = VERTEX_V_INDICES[:, np.newaxis] + VERTEX_H_INDICES VERTEX_CENTER_NUMBERS = np.arange(x0_num_intervals * x1_num_intervals, dtype=np.int32) + n_outer_vertices V0 = np.array([VERTEX_CENTER_NUMBERS, VERTEX_NUMERS[:-1, :-1].ravel(), VERTEX_NUMERS[:-1, 1:].ravel()]).T V1 = np.array([VERTEX_CENTER_NUMBERS, VERTEX_NUMERS[:-1, 1:].ravel(), VERTEX_NUMERS[1:, 1:].ravel()]).T V2 = np.array([VERTEX_CENTER_NUMBERS, VERTEX_NUMERS[1:, 1:].ravel(), VERTEX_NUMERS[1:, :-1].ravel()]).T V3 = np.array([VERTEX_CENTER_NUMBERS, VERTEX_NUMERS[1:, :-1].ravel(), VERTEX_NUMERS[:-1, :-1].ravel()]).T codim2_subentities = np.vstack((V0, V1, V2, V3)) self.__subentities = (codim1_subentities, codim2_subentities) # GEOMETRY # embeddings x0_shifts = np.arange(x0_num_intervals) * self.x0_diameter + (self.x0_range[0] + 0.5 * self.x0_diameter) x1_shifts = np.arange(x1_num_intervals) * self.x1_diameter + (self.x1_range[0] + 0.5 * self.x1_diameter) B = np.tile(np.array(np.meshgrid(x0_shifts, x1_shifts)).reshape((2, -1)).T, (4, 1)) ROT45 = np.array([[1./np.sqrt(2.), -1./np.sqrt(2.)], [1./np.sqrt(2.), 1./np.sqrt(2.)]]) ROT135 = np.array([[-1./np.sqrt(2.), -1./np.sqrt(2.)], [1./np.sqrt(2.), -1./np.sqrt(2.)]]) ROT225 = np.array([[-1./np.sqrt(2.), 1./np.sqrt(2.)], [-1./np.sqrt(2.), -1./np.sqrt(2.)]]) ROT315 = np.array([[1./np.sqrt(2.), 1./np.sqrt(2.)], [-1./np.sqrt(2.), 1./np.sqrt(2.)]]) SCAL = np.diag([self.x0_diameter / np.sqrt(2), self.x1_diameter / np.sqrt(2)]) A0 = np.tile(SCAL.dot(ROT225), (int(n_elements / 4), 1, 1)) A1 = np.tile(SCAL.dot(ROT315), (int(n_elements / 4), 1, 1)) A2 = np.tile(SCAL.dot(ROT45), (int(n_elements / 4), 1, 1)) A3 = np.tile(SCAL.dot(ROT135), (int(n_elements / 4), 1, 1)) A = np.vstack((A0, A1, A2, A3)) self.__embeddings = (A, B)
[docs] def __reduce__(self): return (TriaGrid, (self.num_intervals, self.domain, self.identify_left_right, self.identify_bottom_top))
[docs] def __str__(self): return (f'Tria-Grid on domain ' f'[{self.x0_range[0]},{self.x0_range[1]}] x [{self.x1_range[0]},{self.x1_range[1]}]\n' f'x0-intervals: {self.x0_num_intervals}, x1-intervals: {self.x1_num_intervals}\n' f'elements: {self.size(0)}, edges: {self.size(1)}, vertices: {self.size(2)}')
[docs] def size(self, codim=0): assert 0 <= codim <= 2, 'Invalid codimension' return self.__sizes[codim]
[docs] def subentities(self, codim, subentity_codim): assert 0 <= codim <= 2, 'Invalid codimension' assert codim <= subentity_codim <= 2, 'Invalid subentity codimension' if codim == 0: if subentity_codim == 0: return np.arange(self.size(0), dtype='int32')[:, np.newaxis] else: return self.__subentities[subentity_codim - 1] else: return super().subentities(codim, subentity_codim)
[docs] def embeddings(self, codim=0): if codim == 0: return self.__embeddings else: return super().embeddings(codim)
[docs] def bounding_box(self): return np.array(self.domain)
[docs] @cached def orthogonal_centers(self): embeddings = self.embeddings(0) ne4 = len(embeddings[0]) // 4 if self.x0_diameter > self.x1_diameter: x0_fac = (self.x1_diameter / 2) ** 2 / (3 * (self.x0_diameter / 2) ** 2) x1_fac = 1./3. else: x1_fac = (self.x0_diameter / 2) ** 2 / (3 * (self.x1_diameter / 2) ** 2) x0_fac = 1./3. C0 = embeddings[0][:ne4].dot(np.array([x1_fac, x1_fac])) + embeddings[1][:ne4] C1 = embeddings[0][ne4:2*ne4].dot(np.array([x0_fac, x0_fac])) + embeddings[1][ne4:2*ne4] C2 = embeddings[0][2*ne4:3*ne4].dot(np.array([x1_fac, x1_fac])) + embeddings[1][2*ne4:3*ne4] C3 = embeddings[0][3*ne4:4*ne4].dot(np.array([x0_fac, x0_fac])) + embeddings[1][3*ne4:4*ne4] return np.concatenate((C0, C1, C2, C3), axis=0)
[docs] def visualize(self, U, codim=2, **kwargs): """Visualize scalar data associated to the grid as a patch plot. Parameters ---------- U |NumPy array| of the data to visualize. If `U.dim == 2 and len(U) > 1`, the data is visualized as a time series of plots. Alternatively, a tuple of |Numpy arrays| can be provided, in which case a subplot is created for each entry of the tuple. The lengths of all arrays have to agree. codim The codimension of the entities the data in `U` is attached to (either 0 or 2). kwargs See :func:`~pymor.discretizers.builtin.gui.qt.visualize_patch` """ from pymor.discretizers.builtin.gui.qt import visualize_patch from pymor.vectorarrays.interface import VectorArray from pymor.vectorarrays.numpy import NumpyVectorSpace, NumpyVectorArray if isinstance(U, (np.ndarray, VectorArray)): U = (U,) assert all(isinstance(u, (np.ndarray, VectorArray)) for u in U) U = tuple(NumpyVectorSpace.make_array(u) if isinstance(u, np.ndarray) else u if isinstance(u, NumpyVectorArray) else NumpyVectorSpace.make_array(u.to_numpy()) for u in U) bounding_box = kwargs.pop('bounding_box', self.domain) visualize_patch(self, U, codim=codim, bounding_box=bounding_box, **kwargs)