Source code for pymor.discretizers.builtin.inverse

# This file is part of the pyMOR project (http://www.pymor.org).
# Copyright 2013-2020 pyMOR developers and contributors. All rights reserved.
# License: BSD 2-Clause License (http://opensource.org/licenses/BSD-2-Clause)

import numpy as np


[docs]def inv_two_by_two(A): """Efficiently compute the inverses of a |NumPy array| of 2x2-matrices :: | retval[i1,...,ik,m,n] = numpy.linalg.inv(A[i1,...,ik,:,:]). """ assert A.shape[-1] == A.shape[-2] == 2, 'Wrong shape of argument.' D = A[..., 0, 0] * A[..., 1, 1] - A[..., 1, 0] * A[..., 0, 1] D = 1 / D INV = np.empty_like(A) INV[..., 0, 0] = A[..., 1, 1] INV[..., 1, 1] = A[..., 0, 0] INV[..., 1, 0] = - A[..., 1, 0] INV[..., 0, 1] = - A[..., 0, 1] INV *= D[..., np.newaxis, np.newaxis] return INV
[docs]def inv_transposed_two_by_two(A): """Efficiently compute the tranposed inverses of a |Numpy array| of 2x2-matrices :: | retval[i1,...,ik,m,n] = numpy.linalg.inv(A[i1,...,ik,:,:]). """ assert A.shape[-1] == A.shape[-2] == 2, 'Wrong shape of argument.' D = A[..., 0, 0] * A[..., 1, 1] - A[..., 1, 0] * A[..., 0, 1] D = 1 / D INV = np.empty_like(A) INV[..., 0, 0] = A[..., 1, 1] INV[..., 1, 1] = A[..., 0, 0] INV[..., 1, 0] = - A[..., 0, 1] INV[..., 0, 1] = - A[..., 1, 0] INV *= D[..., np.newaxis, np.newaxis] return INV