pymor.operators.block¶
Module Contents¶
Classes¶
Interface for |
|
A matrix of arbitrary |
|
A row vector of arbitrary |
|
A column vector of arbitrary |
|
A row vector of arbitrary |
|
A column vector of arbitrary |
|
BlockOperator appearing in SecondOrderModel.to_lti(). |
- class pymor.operators.block.BlockOperatorBase(blocks)[source]¶
Bases:
pymor.operators.interface.OperatorInterface for
Parameterdependent discrete operators.An operator in pyMOR is simply a mapping which for any given
parameter valuesmaps vectors from itssourceVectorSpaceto vectors in itsrangeVectorSpace.Note that there is no special distinction between functionals and operators in pyMOR. A functional is simply an operator with
NumpyVectorSpace(1)as itsrangeVectorSpace.- solver_options[source]¶
If not
None, a dict which can contain the following keys:- ‘inverse’
solver options used for
apply_inverse- ‘inverse_adjoint’
solver options used for
apply_inverse_adjoint- ‘jacobian’
solver options for the operators returned by
jacobian(has no effect for linear operators)
If
solver_optionsisNoneor a dict entry is missing orNone, default options are used. The interpretation of the given solver options is up to the operator at hand. In general, values insolver_optionsshould either be strings (indicating a solver type) or dicts of options, usually with an entry'type'which specifies the solver type to use and further items which configure this solver.
- source[source]¶
The source
VectorSpace.
- range[source]¶
The range
VectorSpace.
- H[source]¶
The adjoint operator, i.e.
self.H.apply(V, mu) == self.apply_adjoint(V, mu)
for all V, mu.
- apply(self, U, mu=None)[source]¶
Apply the operator to a
VectorArray.Parameters
- U
VectorArrayof vectors to which the operator is applied.- mu
The
parameter valuesfor which to evaluate the operator.
Returns
VectorArrayof the operator evaluations.
- apply_adjoint(self, V, mu=None)[source]¶
Apply the adjoint operator.
For any given linear
Operatorop,parameter valuesmuandVectorArraysU,Vin thesourceresp.rangewe have:op.apply_adjoint(V, mu).dot(U) == V.inner(op.apply(U, mu))
Thus, when
opis represented by a matrixM,apply_adjointis given by left-multplication of (the complex conjugate of)MwithV.Parameters
- V
VectorArrayof vectors to which the adjoint operator is applied.- mu
The
parameter valuesfor which to apply the adjoint operator.
Returns
VectorArrayof the adjoint operator evaluations.
- assemble(self, mu=None)[source]¶
Assemble the operator for given
parameter values.The result of the method strongly depends on the given operator. For instance, a matrix-based operator will assemble its matrix, a
LincombOperatorwill try to form the linear combination of its operators, whereas an arbitrary operator might simply return aFixedParameterOperator. The only assured property of the assembled operator is that it no longer depends on aParameter.Parameters
- mu
The
parameter valuesfor which to assemble the operator.
Returns
Parameter-independent, assembled
Operator.
- as_range_array(self, mu=None)[source]¶
Return a
VectorArrayrepresentation of the operator in its range space.In the case of a linear operator with
NumpyVectorSpaceassource, this method returns for givenparameter valuesmuaVectorArrayVin the operator’srange, such thatV.lincomb(U.to_numpy()) == self.apply(U, mu)
for all
VectorArraysU.Parameters
- mu
The
parameter valuesfor which to return theVectorArrayrepresentation.
Returns
- V
The
VectorArraydefined above.
- as_source_array(self, mu=None)[source]¶
Return a
VectorArrayrepresentation of the operator in its source space.In the case of a linear operator with
NumpyVectorSpaceasrange, this method returns for givenparameter valuesmuaVectorArrayVin the operator’ssource, such thatself.range.make_array(V.inner(U).T) == self.apply(U, mu)
for all
VectorArraysU.Parameters
- mu
The
parameter valuesfor which to return theVectorArrayrepresentation.
Returns
- V
The
VectorArraydefined above.
- d_mu(self, parameter, index=0)[source]¶
Return the operator’s derivative with respect to a given parameter.
Parameters
- parameter
The parameter w.r.t. which to return the derivative.
- index
Index of the parameter’s component w.r.t which to return the derivative.
Returns
New
Operatorrepresenting the partial derivative.
- class pymor.operators.block.BlockOperator(blocks)[source]¶
Bases:
BlockOperatorBaseA matrix of arbitrary
Operators.This operator can be
appliedto a compatibleBlockVectorArrays.Parameters
- blocks
Two-dimensional array-like where each entry is an
OperatororNone.
- class pymor.operators.block.BlockRowOperator(blocks)[source]¶
Bases:
BlockOperatorBaseA row vector of arbitrary
Operators.
- class pymor.operators.block.BlockColumnOperator(blocks)[source]¶
Bases:
BlockOperatorBaseA column vector of arbitrary
Operators.
- class pymor.operators.block.BlockProjectionOperator(block_space, component)[source]¶
Bases:
BlockRowOperatorA row vector of arbitrary
Operators.
- class pymor.operators.block.BlockEmbeddingOperator(block_space, component)[source]¶
Bases:
BlockColumnOperatorA column vector of arbitrary
Operators.
- class pymor.operators.block.BlockDiagonalOperator(blocks)[source]¶
Bases:
BlockOperatorBlock diagonal
Operatorof arbitraryOperators.This is a specialization of
BlockOperatorfor the block diagonal case.- apply(self, U, mu=None)[source]¶
Apply the operator to a
VectorArray.Parameters
- U
VectorArrayof vectors to which the operator is applied.- mu
The
parameter valuesfor which to evaluate the operator.
Returns
VectorArrayof the operator evaluations.
- apply_adjoint(self, V, mu=None)[source]¶
Apply the adjoint operator.
For any given linear
Operatorop,parameter valuesmuandVectorArraysU,Vin thesourceresp.rangewe have:op.apply_adjoint(V, mu).dot(U) == V.inner(op.apply(U, mu))
Thus, when
opis represented by a matrixM,apply_adjointis given by left-multplication of (the complex conjugate of)MwithV.Parameters
- V
VectorArrayof vectors to which the adjoint operator is applied.- mu
The
parameter valuesfor which to apply the adjoint operator.
Returns
VectorArrayof the adjoint operator evaluations.
- apply_inverse(self, V, mu=None, initial_guess=None, least_squares=False)[source]¶
Apply the inverse operator.
Parameters
- V
VectorArrayof vectors to which the inverse operator is applied.- mu
The
parameter valuesfor which to evaluate the inverse operator.- initial_guess
VectorArraywith the same length asVcontaining initial guesses for the solution. Some implementations ofapply_inversemay ignore this parameter. IfNonea solver-dependent default is used.- least_squares
If
True, solve the least squares problem:u = argmin ||op(u) - v||_2.
Since for an invertible operator the least squares solution agrees with the result of the application of the inverse operator, setting this option should, in general, have no effect on the result for those operators. However, note that when no appropriate
solver_optionsare set for the operator, most implementations will choose a least squares solver by default which may be undesirable.
Returns
VectorArrayof the inverse operator evaluations.Raises
- InversionError
The operator could not be inverted.
- apply_inverse_adjoint(self, U, mu=None, initial_guess=None, least_squares=False)[source]¶
Apply the inverse adjoint operator.
Parameters
- U
VectorArrayof vectors to which the inverse adjoint operator is applied.- mu
The
parameter valuesfor which to evaluate the inverse adjoint operator.- initial_guess
VectorArraywith the same length asUcontaining initial guesses for the solution. Some implementations ofapply_inverse_adjointmay ignore this parameter. IfNonea solver-dependent default is used.- least_squares
If
True, solve the least squares problem:v = argmin ||op^*(v) - u||_2.
Since for an invertible operator the least squares solution agrees with the result of the application of the inverse operator, setting this option should, in general, have no effect on the result for those operators. However, note that when no appropriate
solver_optionsare set for the operator, most operator implementations will choose a least squares solver by default which may be undesirable.
Returns
VectorArrayof the inverse adjoint operator evaluations.Raises
- InversionError
The operator could not be inverted.
- assemble(self, mu=None)[source]¶
Assemble the operator for given
parameter values.The result of the method strongly depends on the given operator. For instance, a matrix-based operator will assemble its matrix, a
LincombOperatorwill try to form the linear combination of its operators, whereas an arbitrary operator might simply return aFixedParameterOperator. The only assured property of the assembled operator is that it no longer depends on aParameter.Parameters
- mu
The
parameter valuesfor which to assemble the operator.
Returns
Parameter-independent, assembled
Operator.
- class pymor.operators.block.SecondOrderModelOperator(alpha, beta, A, B)[source]¶
Bases:
BlockOperatorBlockOperator appearing in SecondOrderModel.to_lti().
This represents a block operator
\[\begin{split}\mathcal{A} = \begin{bmatrix} \alpha I & \beta I \\ B & A \end{bmatrix},\end{split}\]which satisfies
\[\begin{split}\mathcal{A}^H &= \begin{bmatrix} \overline{\alpha} I & B^H \\ \overline{\beta} I & A^H \end{bmatrix}, \\ \mathcal{A}^{-1} &= \begin{bmatrix} (\alpha A - \beta B)^{-1} A & -\beta (\alpha A - \beta B)^{-1} \\ -(\alpha A - \beta B)^{-1} B & \alpha (\alpha A - \beta B)^{-1} \end{bmatrix}, \\ \mathcal{A}^{-H} &= \begin{bmatrix} A^H (\alpha A - \beta B)^{-H} & -B^H (\alpha A - \beta B)^{-H} \\ -\overline{\beta} (\alpha A - \beta B)^{-H} & \overline{\alpha} (\alpha A - \beta B)^{-H} \end{bmatrix}.\end{split}\]- apply(self, U, mu=None)[source]¶
Apply the operator to a
VectorArray.Parameters
- U
VectorArrayof vectors to which the operator is applied.- mu
The
parameter valuesfor which to evaluate the operator.
Returns
VectorArrayof the operator evaluations.
- apply_adjoint(self, V, mu=None)[source]¶
Apply the adjoint operator.
For any given linear
Operatorop,parameter valuesmuandVectorArraysU,Vin thesourceresp.rangewe have:op.apply_adjoint(V, mu).dot(U) == V.inner(op.apply(U, mu))
Thus, when
opis represented by a matrixM,apply_adjointis given by left-multplication of (the complex conjugate of)MwithV.Parameters
- V
VectorArrayof vectors to which the adjoint operator is applied.- mu
The
parameter valuesfor which to apply the adjoint operator.
Returns
VectorArrayof the adjoint operator evaluations.
- apply_inverse(self, V, mu=None, initial_guess=None, least_squares=False)[source]¶
Apply the inverse operator.
Parameters
- V
VectorArrayof vectors to which the inverse operator is applied.- mu
The
parameter valuesfor which to evaluate the inverse operator.- initial_guess
VectorArraywith the same length asVcontaining initial guesses for the solution. Some implementations ofapply_inversemay ignore this parameter. IfNonea solver-dependent default is used.- least_squares
If
True, solve the least squares problem:u = argmin ||op(u) - v||_2.
Since for an invertible operator the least squares solution agrees with the result of the application of the inverse operator, setting this option should, in general, have no effect on the result for those operators. However, note that when no appropriate
solver_optionsare set for the operator, most implementations will choose a least squares solver by default which may be undesirable.
Returns
VectorArrayof the inverse operator evaluations.Raises
- InversionError
The operator could not be inverted.
- apply_inverse_adjoint(self, U, mu=None, initial_guess=None, least_squares=False)[source]¶
Apply the inverse adjoint operator.
Parameters
- U
VectorArrayof vectors to which the inverse adjoint operator is applied.- mu
The
parameter valuesfor which to evaluate the inverse adjoint operator.- initial_guess
VectorArraywith the same length asUcontaining initial guesses for the solution. Some implementations ofapply_inverse_adjointmay ignore this parameter. IfNonea solver-dependent default is used.- least_squares
If
True, solve the least squares problem:v = argmin ||op^*(v) - u||_2.
Since for an invertible operator the least squares solution agrees with the result of the application of the inverse operator, setting this option should, in general, have no effect on the result for those operators. However, note that when no appropriate
solver_optionsare set for the operator, most operator implementations will choose a least squares solver by default which may be undesirable.
Returns
VectorArrayof the inverse adjoint operator evaluations.Raises
- InversionError
The operator could not be inverted.
- assemble(self, mu=None)[source]¶
Assemble the operator for given
parameter values.The result of the method strongly depends on the given operator. For instance, a matrix-based operator will assemble its matrix, a
LincombOperatorwill try to form the linear combination of its operators, whereas an arbitrary operator might simply return aFixedParameterOperator. The only assured property of the assembled operator is that it no longer depends on aParameter.Parameters
- mu
The
parameter valuesfor which to assemble the operator.
Returns
Parameter-independent, assembled
Operator.