pymor.operators.constructions¶
Module containing some constructions to obtain new operators from old ones.
Module Contents¶
Classes¶
Linear combination of arbitrary |
|
Generic |
|
Non-parametric low-rank operator. |
|
|
|
|
|
The identity |
|
A constant |
|
The |
|
Wraps a |
|
Wrap a vector as a vector-like |
|
Wrap a vector as a linear |
|
Forwards all interface calls to given |
|
Makes an |
|
Mark the wrapped |
|
Decompose an affine |
|
Represents the inverse of a given |
|
Represents the inverse adjoint of a given |
|
Represents the adjoint of a given linear |
|
Instantiated by |
Functions¶
Obtain induced norm of an inner product. |
- class pymor.operators.constructions.LincombOperator(operators, coefficients, solver_options=None, name=None)[source]¶
Bases:
pymor.operators.interface.OperatorLinear combination of arbitrary
Operators.This
Operatorrepresents a (possiblyParameterdependent) linear combination of a given list ofOperators.Parameters
- operators
List of
Operatorswhose linear combination is formed.- coefficients
A list of linear coefficients. A linear coefficient can either be a fixed number or a
ParameterFunctional.- solver_options
The
solver_optionsfor the operator.- name
Name of the operator.
- evaluate_coefficients(self, mu)[source]¶
Compute the linear coefficients for given
parameter values.Parameters
- mu
Parameter valuesfor which to compute the linear coefficients.
Returns
List of linear coefficients.
- apply(self, U, mu=None)[source]¶
Apply the operator to a
VectorArray.Parameters
- U
VectorArrayof vectors to which the operator is applied.- mu
The
parameter valuesfor which to evaluate the operator.
Returns
VectorArrayof the operator evaluations.
- apply2(self, V, U, mu=None)[source]¶
Treat the operator as a 2-form and apply it to V and U.
This method is usually implemented as
V.inner(self.apply(U)). In particular, if the operator is a linear operator given by multiplication with a matrix M, thenapply2is given as:op.apply2(V, U) = V^T*M*U.
In the case of complex numbers, note that
apply2is anti-linear in the first variable by definition ofinner.Parameters
- V
VectorArrayof the left arguments V.- U
VectorArrayof the right arguments U.- mu
The
parameter valuesfor which to evaluate the operator.
Returns
A
NumPy arraywith shape(len(V), len(U))containing the 2-form evaluations.
- pairwise_apply2(self, V, U, mu=None)[source]¶
Treat the operator as a 2-form and apply it to V and U in pairs.
This method is usually implemented as
V.pairwise_inner(self.apply(U)). In particular, if the operator is a linear operator given by multiplication with a matrix M, thenapply2is given as:op.apply2(V, U)[i] = V[i]^T*M*U[i].
In the case of complex numbers, note that
pairwise_apply2is anti-linear in the first variable by definition ofpairwise_inner.Parameters
- V
VectorArrayof the left arguments V.- U
VectorArrayof the right arguments U.- mu
The
parameter valuesfor which to evaluate the operator.
Returns
A
NumPy arraywith shape(len(V),) == (len(U),)containing the 2-form evaluations.
- apply_adjoint(self, V, mu=None)[source]¶
Apply the adjoint operator.
For any given linear
Operatorop,parameter valuesmuandVectorArraysU,Vin thesourceresp.rangewe have:op.apply_adjoint(V, mu).dot(U) == V.inner(op.apply(U, mu))
Thus, when
opis represented by a matrixM,apply_adjointis given by left-multplication of (the complex conjugate of)MwithV.Parameters
- V
VectorArrayof vectors to which the adjoint operator is applied.- mu
The
parameter valuesfor which to apply the adjoint operator.
Returns
VectorArrayof the adjoint operator evaluations.
- assemble(self, mu=None)[source]¶
Assemble the operator for given
parameter values.The result of the method strongly depends on the given operator. For instance, a matrix-based operator will assemble its matrix, a
LincombOperatorwill try to form the linear combination of its operators, whereas an arbitrary operator might simply return aFixedParameterOperator. The only assured property of the assembled operator is that it no longer depends on aParameter.Parameters
- mu
The
parameter valuesfor which to assemble the operator.
Returns
Parameter-independent, assembled
Operator.
- jacobian(self, U, mu=None)[source]¶
Return the operator’s Jacobian as a new
Operator.Parameters
- U
Length 1
VectorArraycontaining the vector for which to compute the Jacobian.- mu
The
parameter valuesfor which to compute the Jacobian.
Returns
Linear
Operatorrepresenting the Jacobian.
- d_mu(self, parameter, index=0)[source]¶
Return the operator’s derivative with respect to a given parameter.
Parameters
- parameter
The parameter w.r.t. which to return the derivative.
- index
Index of the parameter’s component w.r.t which to return the derivative.
Returns
New
Operatorrepresenting the partial derivative.
- apply_inverse(self, V, mu=None, initial_guess=None, least_squares=False)[source]¶
Apply the inverse operator.
Parameters
- V
VectorArrayof vectors to which the inverse operator is applied.- mu
The
parameter valuesfor which to evaluate the inverse operator.- initial_guess
VectorArraywith the same length asVcontaining initial guesses for the solution. Some implementations ofapply_inversemay ignore this parameter. IfNonea solver-dependent default is used.- least_squares
If
True, solve the least squares problem:u = argmin ||op(u) - v||_2.
Since for an invertible operator the least squares solution agrees with the result of the application of the inverse operator, setting this option should, in general, have no effect on the result for those operators. However, note that when no appropriate
solver_optionsare set for the operator, most implementations will choose a least squares solver by default which may be undesirable.
Returns
VectorArrayof the inverse operator evaluations.Raises
- InversionError
The operator could not be inverted.
- apply_inverse_adjoint(self, U, mu=None, initial_guess=None, least_squares=False)[source]¶
Apply the inverse adjoint operator.
Parameters
- U
VectorArrayof vectors to which the inverse adjoint operator is applied.- mu
The
parameter valuesfor which to evaluate the inverse adjoint operator.- initial_guess
VectorArraywith the same length asUcontaining initial guesses for the solution. Some implementations ofapply_inverse_adjointmay ignore this parameter. IfNonea solver-dependent default is used.- least_squares
If
True, solve the least squares problem:v = argmin ||op^*(v) - u||_2.
Since for an invertible operator the least squares solution agrees with the result of the application of the inverse operator, setting this option should, in general, have no effect on the result for those operators. However, note that when no appropriate
solver_optionsare set for the operator, most operator implementations will choose a least squares solver by default which may be undesirable.
Returns
VectorArrayof the inverse adjoint operator evaluations.Raises
- InversionError
The operator could not be inverted.
- as_range_array(self, mu=None)[source]¶
Return a
VectorArrayrepresentation of the operator in its range space.In the case of a linear operator with
NumpyVectorSpaceassource, this method returns for givenparameter valuesmuaVectorArrayVin the operator’srange, such thatV.lincomb(U.to_numpy()) == self.apply(U, mu)
for all
VectorArraysU.Parameters
- mu
The
parameter valuesfor which to return theVectorArrayrepresentation.
Returns
- V
The
VectorArraydefined above.
- as_source_array(self, mu=None)[source]¶
Return a
VectorArrayrepresentation of the operator in its source space.In the case of a linear operator with
NumpyVectorSpaceasrange, this method returns for givenparameter valuesmuaVectorArrayVin the operator’ssource, such thatself.range.make_array(V.inner(U).T) == self.apply(U, mu)
for all
VectorArraysU.Parameters
- mu
The
parameter valuesfor which to return theVectorArrayrepresentation.
Returns
- V
The
VectorArraydefined above.
- class pymor.operators.constructions.ConcatenationOperator(operators, solver_options=None, name=None)[source]¶
Bases:
pymor.operators.interface.OperatorOperatorrepresenting the concatenation of twoOperators.Parameters
- operators
Tuple of
Operatorsto concatenate.operators[-1]is the first applied operator,operators[0]is the last applied operator.- solver_options
The
solver_optionsfor the operator.- name
Name of the operator.
- apply(self, U, mu=None)[source]¶
Apply the operator to a
VectorArray.Parameters
- U
VectorArrayof vectors to which the operator is applied.- mu
The
parameter valuesfor which to evaluate the operator.
Returns
VectorArrayof the operator evaluations.
- apply_adjoint(self, V, mu=None)[source]¶
Apply the adjoint operator.
For any given linear
Operatorop,parameter valuesmuandVectorArraysU,Vin thesourceresp.rangewe have:op.apply_adjoint(V, mu).dot(U) == V.inner(op.apply(U, mu))
Thus, when
opis represented by a matrixM,apply_adjointis given by left-multplication of (the complex conjugate of)MwithV.Parameters
- V
VectorArrayof vectors to which the adjoint operator is applied.- mu
The
parameter valuesfor which to apply the adjoint operator.
Returns
VectorArrayof the adjoint operator evaluations.
- jacobian(self, U, mu=None)[source]¶
Return the operator’s Jacobian as a new
Operator.Parameters
- U
Length 1
VectorArraycontaining the vector for which to compute the Jacobian.- mu
The
parameter valuesfor which to compute the Jacobian.
Returns
Linear
Operatorrepresenting the Jacobian.
- restricted(self, dofs)[source]¶
Restrict the operator range to a given set of degrees of freedom.
This method returns a restricted version
restricted_opof the operator along with an arraysource_dofssuch that for anyVectorArrayUinself.sourcethe following is true:self.apply(U, mu).dofs(dofs) == restricted_op.apply(NumpyVectorArray(U.dofs(source_dofs)), mu))
Such an operator is mainly useful for
empirical interpolationwhere the evaluation of the original operator only needs to be known for few selected degrees of freedom. If the operator has a small stencil, only fewsource_dofswill be needed to evaluate the restricted operator which can make its evaluation very fast compared to evaluating the original operator.Parameters
- dofs
One-dimensional
NumPy arrayof degrees of freedom in the operatorrangeto which to restrict.
Returns
- restricted_op
The restricted operator as defined above. The operator will have
NumpyVectorSpace(len(source_dofs))assourceandNumpyVectorSpace(len(dofs))asrange.- source_dofs
One-dimensional
NumPy arrayof source degrees of freedom as defined above.
- class pymor.operators.constructions.ProjectedOperator(operator, range_basis, source_basis, product=None, solver_options=None)[source]¶
Bases:
pymor.operators.interface.OperatorGeneric
Operatorrepresenting the projection of anOperatorto a subspace.This operator is implemented as the concatenation of the linear combination with
source_basis, application of the originaloperatorand projection ontorange_basis. As such, this operator can be used to obtain a reduced basis projection of any givenOperator. However, no offline/online decomposition is performed, so this operator is mainly useful for testing before implementing offline/online decomposition for a specific application.This operator is instantiated in
pymor.algorithms.projection.projectas a default implementation for parametric or nonlinear operators.Parameters
- operator
The
Operatorto project.- range_basis
- source_basis
- product
- solver_options
The
solver_optionsfor the projected operator.
- apply(self, U, mu=None)[source]¶
Apply the operator to a
VectorArray.Parameters
- U
VectorArrayof vectors to which the operator is applied.- mu
The
parameter valuesfor which to evaluate the operator.
Returns
VectorArrayof the operator evaluations.
- jacobian(self, U, mu=None)[source]¶
Return the operator’s Jacobian as a new
Operator.Parameters
- U
Length 1
VectorArraycontaining the vector for which to compute the Jacobian.- mu
The
parameter valuesfor which to compute the Jacobian.
Returns
Linear
Operatorrepresenting the Jacobian.
- assemble(self, mu=None)[source]¶
Assemble the operator for given
parameter values.The result of the method strongly depends on the given operator. For instance, a matrix-based operator will assemble its matrix, a
LincombOperatorwill try to form the linear combination of its operators, whereas an arbitrary operator might simply return aFixedParameterOperator. The only assured property of the assembled operator is that it no longer depends on aParameter.Parameters
- mu
The
parameter valuesfor which to assemble the operator.
Returns
Parameter-independent, assembled
Operator.
- apply_adjoint(self, V, mu=None)[source]¶
Apply the adjoint operator.
For any given linear
Operatorop,parameter valuesmuandVectorArraysU,Vin thesourceresp.rangewe have:op.apply_adjoint(V, mu).dot(U) == V.inner(op.apply(U, mu))
Thus, when
opis represented by a matrixM,apply_adjointis given by left-multplication of (the complex conjugate of)MwithV.Parameters
- V
VectorArrayof vectors to which the adjoint operator is applied.- mu
The
parameter valuesfor which to apply the adjoint operator.
Returns
VectorArrayof the adjoint operator evaluations.
- class pymor.operators.constructions.LowRankOperator(left, core, right, inverted=False, solver_options=None, name=None)[source]¶
Bases:
pymor.operators.interface.OperatorNon-parametric low-rank operator.
Represents an operator of the form \(L C R^H\) or \(L C^{-1} R^H\) where \(L\) and \(R\) are
VectorArraysof column vectors and \(C\) a 2DNumPy array.Parameters
- left
VectorArrayrepresenting \(L\).- core
NumPy arrayrepresenting \(C\).- right
VectorArrayrepresenting \(R\).- inverted
Whether \(C\) is inverted.
- solver_options
The
solver_optionsfor the operator.- name
Name of the operator.
- apply(self, U, mu=None)[source]¶
Apply the operator to a
VectorArray.Parameters
- U
VectorArrayof vectors to which the operator is applied.- mu
The
parameter valuesfor which to evaluate the operator.
Returns
VectorArrayof the operator evaluations.
- apply_adjoint(self, V, mu=None)[source]¶
Apply the adjoint operator.
For any given linear
Operatorop,parameter valuesmuandVectorArraysU,Vin thesourceresp.rangewe have:op.apply_adjoint(V, mu).dot(U) == V.inner(op.apply(U, mu))
Thus, when
opis represented by a matrixM,apply_adjointis given by left-multplication of (the complex conjugate of)MwithV.Parameters
- V
VectorArrayof vectors to which the adjoint operator is applied.- mu
The
parameter valuesfor which to apply the adjoint operator.
Returns
VectorArrayof the adjoint operator evaluations.
- class pymor.operators.constructions.LowRankUpdatedOperator(operator, lr_operator, coeff, lr_coeff, solver_options=None, name=None)[source]¶
Bases:
LincombOperatorOperatorplusLowRankOperator.Represents a linear combination of an
OperatorandLowRankOperator. Uses the Sherman-Morrison-Woodbury formula inapply_inverseandapply_inverse_adjoint:\[\begin{split}\left(\alpha A + \beta L C R^H \right)^{-1} & = \alpha^{-1} A^{-1} - \alpha^{-1} \beta A^{-1} L C \left(\alpha C + \beta C R^H A^{-1} L C \right)^{-1} C R^H A^{-1}, \\ \left(\alpha A + \beta L C^{-1} R^H \right)^{-1} & = \alpha^{-1} A^{-1} - \alpha^{-1} \beta A^{-1} L \left(\alpha C + \beta R^H A^{-1} L \right)^{-1} R^H A^{-1}.\end{split}\]Parameters
- operator
- lr_operator
- coeff
A linear coefficient for
operator. Can either be a fixed number or aParameterFunctional.- lr_coeff
A linear coefficient for
lr_operator. Can either be a fixed number or aParameterFunctional.- solver_options
The
solver_optionsfor the operator.- name
Name of the operator.
- apply_inverse(self, V, mu=None, initial_guess=None, least_squares=False)[source]¶
Apply the inverse operator.
Parameters
- V
VectorArrayof vectors to which the inverse operator is applied.- mu
The
parameter valuesfor which to evaluate the inverse operator.- initial_guess
VectorArraywith the same length asVcontaining initial guesses for the solution. Some implementations ofapply_inversemay ignore this parameter. IfNonea solver-dependent default is used.- least_squares
If
True, solve the least squares problem:u = argmin ||op(u) - v||_2.
Since for an invertible operator the least squares solution agrees with the result of the application of the inverse operator, setting this option should, in general, have no effect on the result for those operators. However, note that when no appropriate
solver_optionsare set for the operator, most implementations will choose a least squares solver by default which may be undesirable.
Returns
VectorArrayof the inverse operator evaluations.Raises
- InversionError
The operator could not be inverted.
- apply_inverse_adjoint(self, U, mu=None, initial_guess=None, least_squares=False)[source]¶
Apply the inverse adjoint operator.
Parameters
- U
VectorArrayof vectors to which the inverse adjoint operator is applied.- mu
The
parameter valuesfor which to evaluate the inverse adjoint operator.- initial_guess
VectorArraywith the same length asUcontaining initial guesses for the solution. Some implementations ofapply_inverse_adjointmay ignore this parameter. IfNonea solver-dependent default is used.- least_squares
If
True, solve the least squares problem:v = argmin ||op^*(v) - u||_2.
Since for an invertible operator the least squares solution agrees with the result of the application of the inverse operator, setting this option should, in general, have no effect on the result for those operators. However, note that when no appropriate
solver_optionsare set for the operator, most operator implementations will choose a least squares solver by default which may be undesirable.
Returns
VectorArrayof the inverse adjoint operator evaluations.Raises
- InversionError
The operator could not be inverted.
- class pymor.operators.constructions.ComponentProjectionOperator(components, source, name=None)[source]¶
Bases:
pymor.operators.interface.OperatorOperatorrepresenting the projection of aVectorArrayonto some of its components.Parameters
- components
List or 1D
NumPy arrayof the indices of the vectorcomponentsthat are to be extracted by the operator.- source
Source
VectorSpaceof the operator.- name
Name of the operator.
- apply(self, U, mu=None)[source]¶
Apply the operator to a
VectorArray.Parameters
- U
VectorArrayof vectors to which the operator is applied.- mu
The
parameter valuesfor which to evaluate the operator.
Returns
VectorArrayof the operator evaluations.
- restricted(self, dofs)[source]¶
Restrict the operator range to a given set of degrees of freedom.
This method returns a restricted version
restricted_opof the operator along with an arraysource_dofssuch that for anyVectorArrayUinself.sourcethe following is true:self.apply(U, mu).dofs(dofs) == restricted_op.apply(NumpyVectorArray(U.dofs(source_dofs)), mu))
Such an operator is mainly useful for
empirical interpolationwhere the evaluation of the original operator only needs to be known for few selected degrees of freedom. If the operator has a small stencil, only fewsource_dofswill be needed to evaluate the restricted operator which can make its evaluation very fast compared to evaluating the original operator.Parameters
- dofs
One-dimensional
NumPy arrayof degrees of freedom in the operatorrangeto which to restrict.
Returns
- restricted_op
The restricted operator as defined above. The operator will have
NumpyVectorSpace(len(source_dofs))assourceandNumpyVectorSpace(len(dofs))asrange.- source_dofs
One-dimensional
NumPy arrayof source degrees of freedom as defined above.
- class pymor.operators.constructions.IdentityOperator(space, name=None)[source]¶
Bases:
pymor.operators.interface.OperatorThe identity
Operator.In other words:
op.apply(U) == U
Parameters
- space
The
VectorSpacethe operator acts on.- name
Name of the operator.
- apply(self, U, mu=None)[source]¶
Apply the operator to a
VectorArray.Parameters
- U
VectorArrayof vectors to which the operator is applied.- mu
The
parameter valuesfor which to evaluate the operator.
Returns
VectorArrayof the operator evaluations.
- apply_adjoint(self, V, mu=None)[source]¶
Apply the adjoint operator.
For any given linear
Operatorop,parameter valuesmuandVectorArraysU,Vin thesourceresp.rangewe have:op.apply_adjoint(V, mu).dot(U) == V.inner(op.apply(U, mu))
Thus, when
opis represented by a matrixM,apply_adjointis given by left-multplication of (the complex conjugate of)MwithV.Parameters
- V
VectorArrayof vectors to which the adjoint operator is applied.- mu
The
parameter valuesfor which to apply the adjoint operator.
Returns
VectorArrayof the adjoint operator evaluations.
- apply_inverse(self, V, mu=None, initial_guess=None, least_squares=False)[source]¶
Apply the inverse operator.
Parameters
- V
VectorArrayof vectors to which the inverse operator is applied.- mu
The
parameter valuesfor which to evaluate the inverse operator.- initial_guess
VectorArraywith the same length asVcontaining initial guesses for the solution. Some implementations ofapply_inversemay ignore this parameter. IfNonea solver-dependent default is used.- least_squares
If
True, solve the least squares problem:u = argmin ||op(u) - v||_2.
Since for an invertible operator the least squares solution agrees with the result of the application of the inverse operator, setting this option should, in general, have no effect on the result for those operators. However, note that when no appropriate
solver_optionsare set for the operator, most implementations will choose a least squares solver by default which may be undesirable.
Returns
VectorArrayof the inverse operator evaluations.Raises
- InversionError
The operator could not be inverted.
- apply_inverse_adjoint(self, U, mu=None, initial_guess=None, least_squares=False)[source]¶
Apply the inverse adjoint operator.
Parameters
- U
VectorArrayof vectors to which the inverse adjoint operator is applied.- mu
The
parameter valuesfor which to evaluate the inverse adjoint operator.- initial_guess
VectorArraywith the same length asUcontaining initial guesses for the solution. Some implementations ofapply_inverse_adjointmay ignore this parameter. IfNonea solver-dependent default is used.- least_squares
If
True, solve the least squares problem:v = argmin ||op^*(v) - u||_2.
Since for an invertible operator the least squares solution agrees with the result of the application of the inverse operator, setting this option should, in general, have no effect on the result for those operators. However, note that when no appropriate
solver_optionsare set for the operator, most operator implementations will choose a least squares solver by default which may be undesirable.
Returns
VectorArrayof the inverse adjoint operator evaluations.Raises
- InversionError
The operator could not be inverted.
- assemble(self, mu=None)[source]¶
Assemble the operator for given
parameter values.The result of the method strongly depends on the given operator. For instance, a matrix-based operator will assemble its matrix, a
LincombOperatorwill try to form the linear combination of its operators, whereas an arbitrary operator might simply return aFixedParameterOperator. The only assured property of the assembled operator is that it no longer depends on aParameter.Parameters
- mu
The
parameter valuesfor which to assemble the operator.
Returns
Parameter-independent, assembled
Operator.
- restricted(self, dofs)[source]¶
Restrict the operator range to a given set of degrees of freedom.
This method returns a restricted version
restricted_opof the operator along with an arraysource_dofssuch that for anyVectorArrayUinself.sourcethe following is true:self.apply(U, mu).dofs(dofs) == restricted_op.apply(NumpyVectorArray(U.dofs(source_dofs)), mu))
Such an operator is mainly useful for
empirical interpolationwhere the evaluation of the original operator only needs to be known for few selected degrees of freedom. If the operator has a small stencil, only fewsource_dofswill be needed to evaluate the restricted operator which can make its evaluation very fast compared to evaluating the original operator.Parameters
- dofs
One-dimensional
NumPy arrayof degrees of freedom in the operatorrangeto which to restrict.
Returns
- restricted_op
The restricted operator as defined above. The operator will have
NumpyVectorSpace(len(source_dofs))assourceandNumpyVectorSpace(len(dofs))asrange.- source_dofs
One-dimensional
NumPy arrayof source degrees of freedom as defined above.
- class pymor.operators.constructions.ConstantOperator(value, source, name=None)[source]¶
Bases:
pymor.operators.interface.OperatorA constant
Operatoralways returning the same vector.Parameters
- value
A
VectorArrayof length 1 containing the vector which is returned by the operator.- source
Source
VectorSpaceof the operator.- name
Name of the operator.
- apply(self, U, mu=None)[source]¶
Apply the operator to a
VectorArray.Parameters
- U
VectorArrayof vectors to which the operator is applied.- mu
The
parameter valuesfor which to evaluate the operator.
Returns
VectorArrayof the operator evaluations.
- jacobian(self, U, mu=None)[source]¶
Return the operator’s Jacobian as a new
Operator.Parameters
- U
Length 1
VectorArraycontaining the vector for which to compute the Jacobian.- mu
The
parameter valuesfor which to compute the Jacobian.
Returns
Linear
Operatorrepresenting the Jacobian.
- restricted(self, dofs)[source]¶
Restrict the operator range to a given set of degrees of freedom.
This method returns a restricted version
restricted_opof the operator along with an arraysource_dofssuch that for anyVectorArrayUinself.sourcethe following is true:self.apply(U, mu).dofs(dofs) == restricted_op.apply(NumpyVectorArray(U.dofs(source_dofs)), mu))
Such an operator is mainly useful for
empirical interpolationwhere the evaluation of the original operator only needs to be known for few selected degrees of freedom. If the operator has a small stencil, only fewsource_dofswill be needed to evaluate the restricted operator which can make its evaluation very fast compared to evaluating the original operator.Parameters
- dofs
One-dimensional
NumPy arrayof degrees of freedom in the operatorrangeto which to restrict.
Returns
- restricted_op
The restricted operator as defined above. The operator will have
NumpyVectorSpace(len(source_dofs))assourceandNumpyVectorSpace(len(dofs))asrange.- source_dofs
One-dimensional
NumPy arrayof source degrees of freedom as defined above.
- apply_inverse(self, V, mu=None, initial_guess=None, least_squares=False)[source]¶
Apply the inverse operator.
Parameters
- V
VectorArrayof vectors to which the inverse operator is applied.- mu
The
parameter valuesfor which to evaluate the inverse operator.- initial_guess
VectorArraywith the same length asVcontaining initial guesses for the solution. Some implementations ofapply_inversemay ignore this parameter. IfNonea solver-dependent default is used.- least_squares
If
True, solve the least squares problem:u = argmin ||op(u) - v||_2.
Since for an invertible operator the least squares solution agrees with the result of the application of the inverse operator, setting this option should, in general, have no effect on the result for those operators. However, note that when no appropriate
solver_optionsare set for the operator, most implementations will choose a least squares solver by default which may be undesirable.
Returns
VectorArrayof the inverse operator evaluations.Raises
- InversionError
The operator could not be inverted.
- class pymor.operators.constructions.ZeroOperator(range, source, name=None)[source]¶
Bases:
pymor.operators.interface.OperatorThe
Operatorwhich maps every vector to zero.Parameters
- range
Range
VectorSpaceof the operator.- source
Source
VectorSpaceof the operator.- name
Name of the operator.
- apply(self, U, mu=None)[source]¶
Apply the operator to a
VectorArray.Parameters
- U
VectorArrayof vectors to which the operator is applied.- mu
The
parameter valuesfor which to evaluate the operator.
Returns
VectorArrayof the operator evaluations.
- apply_adjoint(self, V, mu=None)[source]¶
Apply the adjoint operator.
For any given linear
Operatorop,parameter valuesmuandVectorArraysU,Vin thesourceresp.rangewe have:op.apply_adjoint(V, mu).dot(U) == V.inner(op.apply(U, mu))
Thus, when
opis represented by a matrixM,apply_adjointis given by left-multplication of (the complex conjugate of)MwithV.Parameters
- V
VectorArrayof vectors to which the adjoint operator is applied.- mu
The
parameter valuesfor which to apply the adjoint operator.
Returns
VectorArrayof the adjoint operator evaluations.
- apply_inverse(self, V, mu=None, initial_guess=None, least_squares=False)[source]¶
Apply the inverse operator.
Parameters
- V
VectorArrayof vectors to which the inverse operator is applied.- mu
The
parameter valuesfor which to evaluate the inverse operator.- initial_guess
VectorArraywith the same length asVcontaining initial guesses for the solution. Some implementations ofapply_inversemay ignore this parameter. IfNonea solver-dependent default is used.- least_squares
If
True, solve the least squares problem:u = argmin ||op(u) - v||_2.
Since for an invertible operator the least squares solution agrees with the result of the application of the inverse operator, setting this option should, in general, have no effect on the result for those operators. However, note that when no appropriate
solver_optionsare set for the operator, most implementations will choose a least squares solver by default which may be undesirable.
Returns
VectorArrayof the inverse operator evaluations.Raises
- InversionError
The operator could not be inverted.
- apply_inverse_adjoint(self, U, mu=None, initial_guess=None, least_squares=False)[source]¶
Apply the inverse adjoint operator.
Parameters
- U
VectorArrayof vectors to which the inverse adjoint operator is applied.- mu
The
parameter valuesfor which to evaluate the inverse adjoint operator.- initial_guess
VectorArraywith the same length asUcontaining initial guesses for the solution. Some implementations ofapply_inverse_adjointmay ignore this parameter. IfNonea solver-dependent default is used.- least_squares
If
True, solve the least squares problem:v = argmin ||op^*(v) - u||_2.
Since for an invertible operator the least squares solution agrees with the result of the application of the inverse operator, setting this option should, in general, have no effect on the result for those operators. However, note that when no appropriate
solver_optionsare set for the operator, most operator implementations will choose a least squares solver by default which may be undesirable.
Returns
VectorArrayof the inverse adjoint operator evaluations.Raises
- InversionError
The operator could not be inverted.
- restricted(self, dofs)[source]¶
Restrict the operator range to a given set of degrees of freedom.
This method returns a restricted version
restricted_opof the operator along with an arraysource_dofssuch that for anyVectorArrayUinself.sourcethe following is true:self.apply(U, mu).dofs(dofs) == restricted_op.apply(NumpyVectorArray(U.dofs(source_dofs)), mu))
Such an operator is mainly useful for
empirical interpolationwhere the evaluation of the original operator only needs to be known for few selected degrees of freedom. If the operator has a small stencil, only fewsource_dofswill be needed to evaluate the restricted operator which can make its evaluation very fast compared to evaluating the original operator.Parameters
- dofs
One-dimensional
NumPy arrayof degrees of freedom in the operatorrangeto which to restrict.
Returns
- restricted_op
The restricted operator as defined above. The operator will have
NumpyVectorSpace(len(source_dofs))assourceandNumpyVectorSpace(len(dofs))asrange.- source_dofs
One-dimensional
NumPy arrayof source degrees of freedom as defined above.
- class pymor.operators.constructions.VectorArrayOperator(array, adjoint=False, space_id=None, name=None)[source]¶
Bases:
pymor.operators.interface.OperatorWraps a
VectorArrayas anOperator.If
adjointisFalse, the operator maps fromNumpyVectorSpace(len(array))toarray.spaceby forming linear combinations of the vectors in the array with given coefficient arrays.If
adjoint == True, the operator maps fromarray.spacetoNumpyVectorSpace(len(array))by forming the inner products of the argument with the vectors in the given array.Parameters
- array
The
VectorArraywhich is to be treated as an operator.- adjoint
See description above.
- space_id
Id of the
source(range)VectorSpacein caseadjointisFalse(True).- name
The name of the operator.
- apply(self, U, mu=None)[source]¶
Apply the operator to a
VectorArray.Parameters
- U
VectorArrayof vectors to which the operator is applied.- mu
The
parameter valuesfor which to evaluate the operator.
Returns
VectorArrayof the operator evaluations.
- apply_inverse(self, V, mu=None, initial_guess=None, least_squares=False)[source]¶
Apply the inverse operator.
Parameters
- V
VectorArrayof vectors to which the inverse operator is applied.- mu
The
parameter valuesfor which to evaluate the inverse operator.- initial_guess
VectorArraywith the same length asVcontaining initial guesses for the solution. Some implementations ofapply_inversemay ignore this parameter. IfNonea solver-dependent default is used.- least_squares
If
True, solve the least squares problem:u = argmin ||op(u) - v||_2.
Since for an invertible operator the least squares solution agrees with the result of the application of the inverse operator, setting this option should, in general, have no effect on the result for those operators. However, note that when no appropriate
solver_optionsare set for the operator, most implementations will choose a least squares solver by default which may be undesirable.
Returns
VectorArrayof the inverse operator evaluations.Raises
- InversionError
The operator could not be inverted.
- apply_adjoint(self, V, mu=None)[source]¶
Apply the adjoint operator.
For any given linear
Operatorop,parameter valuesmuandVectorArraysU,Vin thesourceresp.rangewe have:op.apply_adjoint(V, mu).dot(U) == V.inner(op.apply(U, mu))
Thus, when
opis represented by a matrixM,apply_adjointis given by left-multplication of (the complex conjugate of)MwithV.Parameters
- V
VectorArrayof vectors to which the adjoint operator is applied.- mu
The
parameter valuesfor which to apply the adjoint operator.
Returns
VectorArrayof the adjoint operator evaluations.
- apply_inverse_adjoint(self, U, mu=None, initial_guess=None, least_squares=False)[source]¶
Apply the inverse adjoint operator.
Parameters
- U
VectorArrayof vectors to which the inverse adjoint operator is applied.- mu
The
parameter valuesfor which to evaluate the inverse adjoint operator.- initial_guess
VectorArraywith the same length asUcontaining initial guesses for the solution. Some implementations ofapply_inverse_adjointmay ignore this parameter. IfNonea solver-dependent default is used.- least_squares
If
True, solve the least squares problem:v = argmin ||op^*(v) - u||_2.
Since for an invertible operator the least squares solution agrees with the result of the application of the inverse operator, setting this option should, in general, have no effect on the result for those operators. However, note that when no appropriate
solver_optionsare set for the operator, most operator implementations will choose a least squares solver by default which may be undesirable.
Returns
VectorArrayof the inverse adjoint operator evaluations.Raises
- InversionError
The operator could not be inverted.
- as_range_array(self, mu=None)[source]¶
Return a
VectorArrayrepresentation of the operator in its range space.In the case of a linear operator with
NumpyVectorSpaceassource, this method returns for givenparameter valuesmuaVectorArrayVin the operator’srange, such thatV.lincomb(U.to_numpy()) == self.apply(U, mu)
for all
VectorArraysU.Parameters
- mu
The
parameter valuesfor which to return theVectorArrayrepresentation.
Returns
- V
The
VectorArraydefined above.
- as_source_array(self, mu=None)[source]¶
Return a
VectorArrayrepresentation of the operator in its source space.In the case of a linear operator with
NumpyVectorSpaceasrange, this method returns for givenparameter valuesmuaVectorArrayVin the operator’ssource, such thatself.range.make_array(V.inner(U).T) == self.apply(U, mu)
for all
VectorArraysU.Parameters
- mu
The
parameter valuesfor which to return theVectorArrayrepresentation.
Returns
- V
The
VectorArraydefined above.
- restricted(self, dofs)[source]¶
Restrict the operator range to a given set of degrees of freedom.
This method returns a restricted version
restricted_opof the operator along with an arraysource_dofssuch that for anyVectorArrayUinself.sourcethe following is true:self.apply(U, mu).dofs(dofs) == restricted_op.apply(NumpyVectorArray(U.dofs(source_dofs)), mu))
Such an operator is mainly useful for
empirical interpolationwhere the evaluation of the original operator only needs to be known for few selected degrees of freedom. If the operator has a small stencil, only fewsource_dofswill be needed to evaluate the restricted operator which can make its evaluation very fast compared to evaluating the original operator.Parameters
- dofs
One-dimensional
NumPy arrayof degrees of freedom in the operatorrangeto which to restrict.
Returns
- restricted_op
The restricted operator as defined above. The operator will have
NumpyVectorSpace(len(source_dofs))assourceandNumpyVectorSpace(len(dofs))asrange.- source_dofs
One-dimensional
NumPy arrayof source degrees of freedom as defined above.
- class pymor.operators.constructions.VectorOperator(vector, name=None)[source]¶
Bases:
VectorArrayOperatorWrap a vector as a vector-like
Operator.Given a vector
vof dimensiond, this class represents the operatorop: R^1 ----> R^d x |---> x⋅vIn particular:
VectorOperator(vector).as_range_array() == vector
Parameters
- vector
VectorArrayof length 1 containing the vectorv.- name
Name of the operator.
- class pymor.operators.constructions.VectorFunctional(vector, product=None, name=None)[source]¶
Bases:
VectorArrayOperatorWrap a vector as a linear
Functional.Given a vector
vof dimensiond, this class represents the functionalf: R^d ----> R^1 u |---> (u, v)
where
( , )denotes the inner product given byproduct.In particular, if
productisNoneVectorFunctional(vector).as_source_array() == vector.
If
productis not none, we obtainVectorFunctional(vector).as_source_array() == product.apply(vector).
Parameters
- vector
VectorArrayof length 1 containing the vectorv.- product
Operatorrepresenting the scalar product to use.- name
Name of the operator.
- class pymor.operators.constructions.ProxyOperator(operator, name=None)[source]¶
Bases:
pymor.operators.interface.OperatorForwards all interface calls to given
Operator.Mainly useful as base class for other
Operatorimplementations.Parameters
- operator
The
Operatorto wrap.- name
Name of the wrapping operator.
- apply(self, U, mu=None)[source]¶
Apply the operator to a
VectorArray.Parameters
- U
VectorArrayof vectors to which the operator is applied.- mu
The
parameter valuesfor which to evaluate the operator.
Returns
VectorArrayof the operator evaluations.
- apply_adjoint(self, V, mu=None)[source]¶
Apply the adjoint operator.
For any given linear
Operatorop,parameter valuesmuandVectorArraysU,Vin thesourceresp.rangewe have:op.apply_adjoint(V, mu).dot(U) == V.inner(op.apply(U, mu))
Thus, when
opis represented by a matrixM,apply_adjointis given by left-multplication of (the complex conjugate of)MwithV.Parameters
- V
VectorArrayof vectors to which the adjoint operator is applied.- mu
The
parameter valuesfor which to apply the adjoint operator.
Returns
VectorArrayof the adjoint operator evaluations.
- apply_inverse(self, V, mu=None, initial_guess=None, least_squares=False)[source]¶
Apply the inverse operator.
Parameters
- V
VectorArrayof vectors to which the inverse operator is applied.- mu
The
parameter valuesfor which to evaluate the inverse operator.- initial_guess
VectorArraywith the same length asVcontaining initial guesses for the solution. Some implementations ofapply_inversemay ignore this parameter. IfNonea solver-dependent default is used.- least_squares
If
True, solve the least squares problem:u = argmin ||op(u) - v||_2.
Since for an invertible operator the least squares solution agrees with the result of the application of the inverse operator, setting this option should, in general, have no effect on the result for those operators. However, note that when no appropriate
solver_optionsare set for the operator, most implementations will choose a least squares solver by default which may be undesirable.
Returns
VectorArrayof the inverse operator evaluations.Raises
- InversionError
The operator could not be inverted.
- apply_inverse_adjoint(self, U, mu=None, initial_guess=None, least_squares=False)[source]¶
Apply the inverse adjoint operator.
Parameters
- U
VectorArrayof vectors to which the inverse adjoint operator is applied.- mu
The
parameter valuesfor which to evaluate the inverse adjoint operator.- initial_guess
VectorArraywith the same length asUcontaining initial guesses for the solution. Some implementations ofapply_inverse_adjointmay ignore this parameter. IfNonea solver-dependent default is used.- least_squares
If
True, solve the least squares problem:v = argmin ||op^*(v) - u||_2.
Since for an invertible operator the least squares solution agrees with the result of the application of the inverse operator, setting this option should, in general, have no effect on the result for those operators. However, note that when no appropriate
solver_optionsare set for the operator, most operator implementations will choose a least squares solver by default which may be undesirable.
Returns
VectorArrayof the inverse adjoint operator evaluations.Raises
- InversionError
The operator could not be inverted.
- jacobian(self, U, mu=None)[source]¶
Return the operator’s Jacobian as a new
Operator.Parameters
- U
Length 1
VectorArraycontaining the vector for which to compute the Jacobian.- mu
The
parameter valuesfor which to compute the Jacobian.
Returns
Linear
Operatorrepresenting the Jacobian.
- restricted(self, dofs)[source]¶
Restrict the operator range to a given set of degrees of freedom.
This method returns a restricted version
restricted_opof the operator along with an arraysource_dofssuch that for anyVectorArrayUinself.sourcethe following is true:self.apply(U, mu).dofs(dofs) == restricted_op.apply(NumpyVectorArray(U.dofs(source_dofs)), mu))
Such an operator is mainly useful for
empirical interpolationwhere the evaluation of the original operator only needs to be known for few selected degrees of freedom. If the operator has a small stencil, only fewsource_dofswill be needed to evaluate the restricted operator which can make its evaluation very fast compared to evaluating the original operator.Parameters
- dofs
One-dimensional
NumPy arrayof degrees of freedom in the operatorrangeto which to restrict.
Returns
- restricted_op
The restricted operator as defined above. The operator will have
NumpyVectorSpace(len(source_dofs))assourceandNumpyVectorSpace(len(dofs))asrange.- source_dofs
One-dimensional
NumPy arrayof source degrees of freedom as defined above.
- class pymor.operators.constructions.FixedParameterOperator(operator, mu=None, name=None)[source]¶
Bases:
ProxyOperatorMakes an
OperatorParameter-independent by setting fixedparameter values.Parameters
- operator
The
Operatorto wrap.- mu
The fixed
parameter valuesthat will be fed to theapplymethod (and related methods) ofoperator.
- apply(self, U, mu=None)[source]¶
Apply the operator to a
VectorArray.Parameters
- U
VectorArrayof vectors to which the operator is applied.- mu
The
parameter valuesfor which to evaluate the operator.
Returns
VectorArrayof the operator evaluations.
- apply_adjoint(self, V, mu=None)[source]¶
Apply the adjoint operator.
For any given linear
Operatorop,parameter valuesmuandVectorArraysU,Vin thesourceresp.rangewe have:op.apply_adjoint(V, mu).dot(U) == V.inner(op.apply(U, mu))
Thus, when
opis represented by a matrixM,apply_adjointis given by left-multplication of (the complex conjugate of)MwithV.Parameters
- V
VectorArrayof vectors to which the adjoint operator is applied.- mu
The
parameter valuesfor which to apply the adjoint operator.
Returns
VectorArrayof the adjoint operator evaluations.
- apply_inverse(self, V, mu=None, initial_guess=None, least_squares=False)[source]¶
Apply the inverse operator.
Parameters
- V
VectorArrayof vectors to which the inverse operator is applied.- mu
The
parameter valuesfor which to evaluate the inverse operator.- initial_guess
VectorArraywith the same length asVcontaining initial guesses for the solution. Some implementations ofapply_inversemay ignore this parameter. IfNonea solver-dependent default is used.- least_squares
If
True, solve the least squares problem:u = argmin ||op(u) - v||_2.
Since for an invertible operator the least squares solution agrees with the result of the application of the inverse operator, setting this option should, in general, have no effect on the result for those operators. However, note that when no appropriate
solver_optionsare set for the operator, most implementations will choose a least squares solver by default which may be undesirable.
Returns
VectorArrayof the inverse operator evaluations.Raises
- InversionError
The operator could not be inverted.
- apply_inverse_adjoint(self, U, mu=None, initial_guess=None, least_squares=False)[source]¶
Apply the inverse adjoint operator.
Parameters
- U
VectorArrayof vectors to which the inverse adjoint operator is applied.- mu
The
parameter valuesfor which to evaluate the inverse adjoint operator.- initial_guess
VectorArraywith the same length asUcontaining initial guesses for the solution. Some implementations ofapply_inverse_adjointmay ignore this parameter. IfNonea solver-dependent default is used.- least_squares
If
True, solve the least squares problem:v = argmin ||op^*(v) - u||_2.
Since for an invertible operator the least squares solution agrees with the result of the application of the inverse operator, setting this option should, in general, have no effect on the result for those operators. However, note that when no appropriate
solver_optionsare set for the operator, most operator implementations will choose a least squares solver by default which may be undesirable.
Returns
VectorArrayof the inverse adjoint operator evaluations.Raises
- InversionError
The operator could not be inverted.
- jacobian(self, U, mu=None)[source]¶
Return the operator’s Jacobian as a new
Operator.Parameters
- U
Length 1
VectorArraycontaining the vector for which to compute the Jacobian.- mu
The
parameter valuesfor which to compute the Jacobian.
Returns
Linear
Operatorrepresenting the Jacobian.
- class pymor.operators.constructions.LinearOperator(operator, name=None)[source]¶
Bases:
ProxyOperatorMark the wrapped
Operatorto be linear.
- class pymor.operators.constructions.AffineOperator(operator, name=None)[source]¶
Bases:
ProxyOperatorDecompose an affine
Operatorinto affine_shift and linear_part.- jacobian(self, U, mu=None)[source]¶
Return the operator’s Jacobian as a new
Operator.Parameters
- U
Length 1
VectorArraycontaining the vector for which to compute the Jacobian.- mu
The
parameter valuesfor which to compute the Jacobian.
Returns
Linear
Operatorrepresenting the Jacobian.
- class pymor.operators.constructions.InverseOperator(operator, name=None)[source]¶
Bases:
pymor.operators.interface.OperatorRepresents the inverse of a given
Operator.Parameters
- operator
The
Operatorof which the inverse is formed.- name
If not
None, name of the operator.
- apply(self, U, mu=None)[source]¶
Apply the operator to a
VectorArray.Parameters
- U
VectorArrayof vectors to which the operator is applied.- mu
The
parameter valuesfor which to evaluate the operator.
Returns
VectorArrayof the operator evaluations.
- apply_adjoint(self, V, mu=None)[source]¶
Apply the adjoint operator.
For any given linear
Operatorop,parameter valuesmuandVectorArraysU,Vin thesourceresp.rangewe have:op.apply_adjoint(V, mu).dot(U) == V.inner(op.apply(U, mu))
Thus, when
opis represented by a matrixM,apply_adjointis given by left-multplication of (the complex conjugate of)MwithV.Parameters
- V
VectorArrayof vectors to which the adjoint operator is applied.- mu
The
parameter valuesfor which to apply the adjoint operator.
Returns
VectorArrayof the adjoint operator evaluations.
- apply_inverse(self, V, mu=None, initial_guess=None, least_squares=False)[source]¶
Apply the inverse operator.
Parameters
- V
VectorArrayof vectors to which the inverse operator is applied.- mu
The
parameter valuesfor which to evaluate the inverse operator.- initial_guess
VectorArraywith the same length asVcontaining initial guesses for the solution. Some implementations ofapply_inversemay ignore this parameter. IfNonea solver-dependent default is used.- least_squares
If
True, solve the least squares problem:u = argmin ||op(u) - v||_2.
Since for an invertible operator the least squares solution agrees with the result of the application of the inverse operator, setting this option should, in general, have no effect on the result for those operators. However, note that when no appropriate
solver_optionsare set for the operator, most implementations will choose a least squares solver by default which may be undesirable.
Returns
VectorArrayof the inverse operator evaluations.Raises
- InversionError
The operator could not be inverted.
- apply_inverse_adjoint(self, U, mu=None, initial_guess=None, least_squares=False)[source]¶
Apply the inverse adjoint operator.
Parameters
- U
VectorArrayof vectors to which the inverse adjoint operator is applied.- mu
The
parameter valuesfor which to evaluate the inverse adjoint operator.- initial_guess
VectorArraywith the same length asUcontaining initial guesses for the solution. Some implementations ofapply_inverse_adjointmay ignore this parameter. IfNonea solver-dependent default is used.- least_squares
If
True, solve the least squares problem:v = argmin ||op^*(v) - u||_2.
Since for an invertible operator the least squares solution agrees with the result of the application of the inverse operator, setting this option should, in general, have no effect on the result for those operators. However, note that when no appropriate
solver_optionsare set for the operator, most operator implementations will choose a least squares solver by default which may be undesirable.
Returns
VectorArrayof the inverse adjoint operator evaluations.Raises
- InversionError
The operator could not be inverted.
- class pymor.operators.constructions.InverseAdjointOperator(operator, name=None)[source]¶
Bases:
pymor.operators.interface.OperatorRepresents the inverse adjoint of a given
Operator.Parameters
- operator
The
Operatorof which the inverse adjoint is formed.- name
If not
None, name of the operator.
- apply(self, U, mu=None)[source]¶
Apply the operator to a
VectorArray.Parameters
- U
VectorArrayof vectors to which the operator is applied.- mu
The
parameter valuesfor which to evaluate the operator.
Returns
VectorArrayof the operator evaluations.
- apply_adjoint(self, V, mu=None)[source]¶
Apply the adjoint operator.
For any given linear
Operatorop,parameter valuesmuandVectorArraysU,Vin thesourceresp.rangewe have:op.apply_adjoint(V, mu).dot(U) == V.inner(op.apply(U, mu))
Thus, when
opis represented by a matrixM,apply_adjointis given by left-multplication of (the complex conjugate of)MwithV.Parameters
- V
VectorArrayof vectors to which the adjoint operator is applied.- mu
The
parameter valuesfor which to apply the adjoint operator.
Returns
VectorArrayof the adjoint operator evaluations.
- apply_inverse(self, V, mu=None, initial_guess=None, least_squares=False)[source]¶
Apply the inverse operator.
Parameters
- V
VectorArrayof vectors to which the inverse operator is applied.- mu
The
parameter valuesfor which to evaluate the inverse operator.- initial_guess
VectorArraywith the same length asVcontaining initial guesses for the solution. Some implementations ofapply_inversemay ignore this parameter. IfNonea solver-dependent default is used.- least_squares
If
True, solve the least squares problem:u = argmin ||op(u) - v||_2.
Since for an invertible operator the least squares solution agrees with the result of the application of the inverse operator, setting this option should, in general, have no effect on the result for those operators. However, note that when no appropriate
solver_optionsare set for the operator, most implementations will choose a least squares solver by default which may be undesirable.
Returns
VectorArrayof the inverse operator evaluations.Raises
- InversionError
The operator could not be inverted.
- apply_inverse_adjoint(self, U, mu=None, initial_guess=None, least_squares=False)[source]¶
Apply the inverse adjoint operator.
Parameters
- U
VectorArrayof vectors to which the inverse adjoint operator is applied.- mu
The
parameter valuesfor which to evaluate the inverse adjoint operator.- initial_guess
VectorArraywith the same length asUcontaining initial guesses for the solution. Some implementations ofapply_inverse_adjointmay ignore this parameter. IfNonea solver-dependent default is used.- least_squares
If
True, solve the least squares problem:v = argmin ||op^*(v) - u||_2.
Since for an invertible operator the least squares solution agrees with the result of the application of the inverse operator, setting this option should, in general, have no effect on the result for those operators. However, note that when no appropriate
solver_optionsare set for the operator, most operator implementations will choose a least squares solver by default which may be undesirable.
Returns
VectorArrayof the inverse adjoint operator evaluations.Raises
- InversionError
The operator could not be inverted.
- class pymor.operators.constructions.AdjointOperator(operator, source_product=None, range_product=None, name=None, with_apply_inverse=True, solver_options=None)[source]¶
Bases:
pymor.operators.interface.OperatorRepresents the adjoint of a given linear
Operator.For a linear
Operatoropthe adjointop^*ofopis given by:(op^*(v), u)_s = (v, op(u))_r,
where
( , )_sand( , )_rdenote the inner products on the source and range space ofop. If two products are given byP_sandP_r, then:op^*(v) = P_s^(-1) o op.H o P_r,
Thus, if
( , )_sand( , )_rare the Euclidean inner products,op^*vis simply given by application of the :attr:adjoint <pymor.operators.interface.Operator.H>`Operator.Parameters
- operator
The
Operatorof which the adjoint is formed.- source_product
If not
None, inner productOperatorfor the sourceVectorSpacew.r.t. which to take the adjoint.- range_product
If not
None, inner productOperatorfor the rangeVectorSpacew.r.t. which to take the adjoint.- name
If not
None, name of the operator.- with_apply_inverse
If
True, provide ownapply_inverseandapply_inverse_adjointimplementations by calling these methods on the givenoperator. (Is set toFalsein the default implementation of andapply_inverse_adjoint.)- solver_options
When
with_apply_inverseisFalse, thesolver_optionsto use for theapply_inversedefault implementation.
- apply(self, U, mu=None)[source]¶
Apply the operator to a
VectorArray.Parameters
- U
VectorArrayof vectors to which the operator is applied.- mu
The
parameter valuesfor which to evaluate the operator.
Returns
VectorArrayof the operator evaluations.
- apply_adjoint(self, V, mu=None)[source]¶
Apply the adjoint operator.
For any given linear
Operatorop,parameter valuesmuandVectorArraysU,Vin thesourceresp.rangewe have:op.apply_adjoint(V, mu).dot(U) == V.inner(op.apply(U, mu))
Thus, when
opis represented by a matrixM,apply_adjointis given by left-multplication of (the complex conjugate of)MwithV.Parameters
- V
VectorArrayof vectors to which the adjoint operator is applied.- mu
The
parameter valuesfor which to apply the adjoint operator.
Returns
VectorArrayof the adjoint operator evaluations.
- apply_inverse(self, V, mu=None, initial_guess=None, least_squares=False)[source]¶
Apply the inverse operator.
Parameters
- V
VectorArrayof vectors to which the inverse operator is applied.- mu
The
parameter valuesfor which to evaluate the inverse operator.- initial_guess
VectorArraywith the same length asVcontaining initial guesses for the solution. Some implementations ofapply_inversemay ignore this parameter. IfNonea solver-dependent default is used.- least_squares
If
True, solve the least squares problem:u = argmin ||op(u) - v||_2.
Since for an invertible operator the least squares solution agrees with the result of the application of the inverse operator, setting this option should, in general, have no effect on the result for those operators. However, note that when no appropriate
solver_optionsare set for the operator, most implementations will choose a least squares solver by default which may be undesirable.
Returns
VectorArrayof the inverse operator evaluations.Raises
- InversionError
The operator could not be inverted.
- apply_inverse_adjoint(self, U, mu=None, initial_guess=None, least_squares=False)[source]¶
Apply the inverse adjoint operator.
Parameters
- U
VectorArrayof vectors to which the inverse adjoint operator is applied.- mu
The
parameter valuesfor which to evaluate the inverse adjoint operator.- initial_guess
VectorArraywith the same length asUcontaining initial guesses for the solution. Some implementations ofapply_inverse_adjointmay ignore this parameter. IfNonea solver-dependent default is used.- least_squares
If
True, solve the least squares problem:v = argmin ||op^*(v) - u||_2.
Since for an invertible operator the least squares solution agrees with the result of the application of the inverse operator, setting this option should, in general, have no effect on the result for those operators. However, note that when no appropriate
solver_optionsare set for the operator, most operator implementations will choose a least squares solver by default which may be undesirable.
Returns
VectorArrayof the inverse adjoint operator evaluations.Raises
- InversionError
The operator could not be inverted.
- class pymor.operators.constructions.SelectionOperator(operators, parameter_functional, boundaries, name=None)[source]¶
Bases:
pymor.operators.interface.OperatorAn
Operatorselected from a list ofOperators.operators[i]is used ifparameter_functional(mu)is less or equal thanboundaries[i]and greater thanboundaries[i-1]:-infty ------- boundaries[i] ---------- boundaries[i+1] ------- infty | | --- operators[i] ---|---- operators[i+1] ----|---- operators[i+2] | |
Parameters
- operators
List of
Operatorsfrom which oneOperatoris selected based on the givenparameter values.- parameter_functional
The
ParameterFunctionalused for the selection of oneOperator.- boundaries
The interval boundaries as defined above.
- name
Name of the operator.
- assemble(self, mu=None)[source]¶
Assemble the operator for given
parameter values.The result of the method strongly depends on the given operator. For instance, a matrix-based operator will assemble its matrix, a
LincombOperatorwill try to form the linear combination of its operators, whereas an arbitrary operator might simply return aFixedParameterOperator. The only assured property of the assembled operator is that it no longer depends on aParameter.Parameters
- mu
The
parameter valuesfor which to assemble the operator.
Returns
Parameter-independent, assembled
Operator.
- apply(self, U, mu=None)[source]¶
Apply the operator to a
VectorArray.Parameters
- U
VectorArrayof vectors to which the operator is applied.- mu
The
parameter valuesfor which to evaluate the operator.
Returns
VectorArrayof the operator evaluations.
- apply_adjoint(self, V, mu=None)[source]¶
Apply the adjoint operator.
For any given linear
Operatorop,parameter valuesmuandVectorArraysU,Vin thesourceresp.rangewe have:op.apply_adjoint(V, mu).dot(U) == V.inner(op.apply(U, mu))
Thus, when
opis represented by a matrixM,apply_adjointis given by left-multplication of (the complex conjugate of)MwithV.Parameters
- V
VectorArrayof vectors to which the adjoint operator is applied.- mu
The
parameter valuesfor which to apply the adjoint operator.
Returns
VectorArrayof the adjoint operator evaluations.
- as_range_array(self, mu=None)[source]¶
Return a
VectorArrayrepresentation of the operator in its range space.In the case of a linear operator with
NumpyVectorSpaceassource, this method returns for givenparameter valuesmuaVectorArrayVin the operator’srange, such thatV.lincomb(U.to_numpy()) == self.apply(U, mu)
for all
VectorArraysU.Parameters
- mu
The
parameter valuesfor which to return theVectorArrayrepresentation.
Returns
- V
The
VectorArraydefined above.
- as_source_array(self, mu=None)[source]¶
Return a
VectorArrayrepresentation of the operator in its source space.In the case of a linear operator with
NumpyVectorSpaceasrange, this method returns for givenparameter valuesmuaVectorArrayVin the operator’ssource, such thatself.range.make_array(V.inner(U).T) == self.apply(U, mu)
for all
VectorArraysU.Parameters
- mu
The
parameter valuesfor which to return theVectorArrayrepresentation.
Returns
- V
The
VectorArraydefined above.
- pymor.operators.constructions.induced_norm(product, raise_negative=True, tol=1e-10, name=None)[source]¶
Obtain induced norm of an inner product.
The norm of the vectors in a
VectorArrayU is calculated by callingproduct.pairwise_apply2(U, U, mu=mu).
In addition, negative norm squares of absolute value smaller than
tolare clipped to0. Ifraise_negativeisTrue, aValueErrorexception is raised if there are negative norm squares of absolute value larger thantol.Parameters
- product
The inner product
Operatorfor which the norm is to be calculated.- raise_negative
If
True, raise an exception if calculated norm is negative.- tol
See above.
- name
optional, if None product’s name is used
Returns
- norm
A function
norm(U, mu=None)taking aVectorArrayUas input together with theparameter valuesmuwhich are passed to the product.
- class pymor.operators.constructions.InducedNorm(product, raise_negative, tol, name)[source]¶
Bases:
pymor.parameters.base.ParametricObjectInstantiated by
induced_norm. Do not use directly.