pymor.reductors.interpolation
¶
Module Contents¶
Classes¶
Generic bitangential Hermite interpolation reductor. |
|
Bitangential Hermite interpolation for |
|
Bitangential Hermite interpolation for |
|
Bitangential Hermite interpolation for |
|
Loewner bitangential Hermite interpolation reductor. |
- class pymor.reductors.interpolation.GenericBHIReductor(fom, mu=None)[source]¶
Bases:
pymor.core.base.BasicObject
Generic bitangential Hermite interpolation reductor.
This is a generic reductor for reducing any linear
InputStateOutputModel
with the transfer function which can be written in the generalized coprime factorization as in [BG09]. The interpolation here is limited to only up to the first derivative. Interpolation points are assumed to be pairwise distinct.In particular, given interpolation points
, right tangential directions , and left tangential directions , for , which are closed under conjugation (if is real, then so are and ; if is complex, there is such that , , ), this reductor finds a transfer function such thatfor all
.Parameters
- fom
The full-order
Model
to reduce.- mu
- reduce(self, sigma, b, c, projection='orth')[source]¶
Bitangential Hermite interpolation.
Parameters
- sigma
Interpolation points (closed under conjugation), sequence of length
r
.- b
Right tangential directions,
NumPy array
of shape(r, fom.dim_input)
.- c
Left tangential directions,
NumPy array
of shape(r, fom.dim_output)
.- projection
Projection method:
'orth'
: projection matrices are orthogonalized with respect to the Euclidean inner product'biorth'
: projection matrices are biorthogolized with respect to the E product
Returns
- rom
Reduced-order model.
- class pymor.reductors.interpolation.LTIBHIReductor(fom, mu=None)[source]¶
Bases:
GenericBHIReductor
Bitangential Hermite interpolation for
LTIModels
.Parameters
- fom
The full-order
LTIModel
to reduce.- mu
- reduce(self, sigma, b, c, projection='orth')[source]¶
Bitangential Hermite interpolation.
Parameters
- sigma
Interpolation points (closed under conjugation), sequence of length
r
.- b
Right tangential directions,
NumPy array
of shape(r, fom.dim_input)
.- c
Left tangential directions,
NumPy array
of shape(r, fom.dim_output)
.- projection
Projection method:
'orth'
: projection matrices are orthogonalized with respect to the Euclidean inner product'biorth'
: projection matrices are biorthogolized with respect to the E product'arnoldi'
: projection matrices are orthogonalized using the rational Arnoldi process (available only for SISO systems).
Returns
- rom
Reduced-order model.
- class pymor.reductors.interpolation.SOBHIReductor(fom, mu=None)[source]¶
Bases:
GenericBHIReductor
Bitangential Hermite interpolation for
SecondOrderModels
.Parameters
- fom
The full-order
SecondOrderModel
to reduce.- mu
- class pymor.reductors.interpolation.DelayBHIReductor(fom, mu=None)[source]¶
Bases:
GenericBHIReductor
Bitangential Hermite interpolation for
LinearDelayModels
.Parameters
- fom
The full-order
LinearDelayModel
to reduce.- mu
- class pymor.reductors.interpolation.TFBHIReductor(fom, mu=None)[source]¶
Bases:
pymor.core.base.BasicObject
Loewner bitangential Hermite interpolation reductor.
See [BG12].
Parameters
- fom
The
Model
witheval_tf
andeval_dtf
methods.- mu
- reduce(self, sigma, b, c)[source]¶
Realization-independent tangential Hermite interpolation.
Parameters
- sigma
Interpolation points (closed under conjugation), sequence of length
r
.- b
Right tangential directions,
NumPy array
of shape(r, fom.dim_input)
.- c
Left tangential directions,
NumPy array
of shape(r, fom.dim_output)
.
Returns
- lti
The reduced-order
LTIModel
interpolating the transfer function offom
.