pymor.reductors.mt¶
Module Contents¶
Classes¶
Modal Truncation reductor. |
- class pymor.reductors.mt.MTReductor(fom, mu=None)[source]¶
Bases:
pymor.core.base.BasicObjectModal Truncation reductor.
See Section 9.2 in [Ant05].
Parameters
- fom
The full-order
LTIModelto reduce.- mu
- reduce(self, r=None, decomposition='samdp', projection='orth', symmetric=False, which='NR', method_options=None, allow_complex_rom=False)[source]¶
Modal Truncation.
Parameters
- r
Order of the reduced model.
- decomposition
Algorithm used for the decomposition:
'eig': scipy.linalg.eig algorithm'samdp': find dominant poles usingsamdpalgorithm
- projection
Projection method used:
'orth': projection matrices are orthogonalized with respect to the Euclidean inner product'biorth': projection matrices are biorthogolized with respect to the E product
- symmetric
If
True, assume A is symmetric and E is symmetric positive definite.- which
A string specifying which
reigenvalues and eigenvectors to compute. Possible values are:'SM': select eigenvalues with smallest magnitude (only for decomposition with eig)'LR': select eigenvalues with largest real part (only for decomposition with eig)'NR': select eigenvalues with largest norm(residual) / abs(Re(pole))'NS': select eigenvalues with largest norm(residual) / abs(pole)'NM': select eigenvalues with largest norm(residual)
- method_options
Optional dict with more options for the samdp algorithm.
- allow_complex_rom
If
True, the reduced model is complex when the poles of the reduced model are not closed under complex conjugation.
Returns
- rom
Reduced-order model.