pymor.algorithms.krylov¶
Module for computing (rational) Krylov subspaces’ bases.
Module Contents¶
- pymor.algorithms.krylov.arnoldi(A, E, b, r)[source]¶
Arnoldi algorithm.
Computes a real orthonormal basis for the Krylov subspace
\[\mathrm{span}\left\{ E^{-1} b, E^{-1} A E^{-1} b, {\left(E^{-1} A\right)}^2 E^{-1} b, \ldots, {\left(E^{-1} A\right)}^{r - 1} E^{-1} b, \right\}.\]Parameters
- A
Real
OperatorA.- E
Real
OperatorE.- b
Real
VectorArrayof length 1.- r
Order of the Krylov subspace (positive integer).
Returns
- V
Orthonormal basis for the Krylov subspace as a
VectorArray.
- pymor.algorithms.krylov.rational_arnoldi(A, E, b, sigma, trans=False)[source]¶
Rational Arnoldi algorithm.
If
trans == False, using Arnoldi process, computes a real orthonormal basis for the rational Krylov subspace\[\mathrm{span}\{ (\sigma_1 E - A)^{-1} b, (\sigma_2 E - A)^{-1} b, \ldots, (\sigma_r E - A)^{-1} b \},\]otherwise, computes the same for
\[\mathrm{span}\{ (\sigma_1 E - A)^{-T} b^T, (\sigma_2 E - A)^{-T} b^T, \ldots, (\sigma_r E - A)^{-T} b^T \}.\]Interpolation points in
sigmaare allowed to repeat (in any order). Then, in the above expression,\[\underbrace{ (\sigma_i E - A)^{-1} b, \ldots, (\sigma_i E - A)^{-1} b }_{m \text{ times}}\]is replaced by
\[(\sigma_i E - A)^{-1} b, (\sigma_i E - A)^{-1} E (\sigma_i E - A)^{-1} b, \ldots, \left((\sigma_i E - A)^{-1} E\right)^{m - 1} (\sigma_i E - A)^{-1} b.\]Analogously for the
trans == Truecase.Parameters
Returns
- V
Orthonormal basis for the Krylov subspace as a
VectorArray.
- pymor.algorithms.krylov.tangential_rational_krylov(A, E, B, b, sigma, trans=False, orth=True)[source]¶
Tangential Rational Krylov subspace.
If
trans == False, computes a real basis for the rational Krylov subspace\[\mathrm{span}\{ (\sigma_1 E - A)^{-1} B b_1, (\sigma_2 E - A)^{-1} B b_2, \ldots, (\sigma_r E - A)^{-1} B b_r \},\]otherwise, computes the same for
\[\mathrm{span}\{ (\sigma_1 E - A)^{-T} B^T b_1, (\sigma_2 E - A)^{-T} B^T b_2, \ldots, (\sigma_r E - A)^{-T} B^T b_r \}.\]Interpolation points in
sigmaare assumed to be pairwise distinct.Parameters
- A
Real
OperatorA.- E
Real
OperatorE.- B
Real
OperatorB.- b
VectorArrayfromB.source, iftrans == False, orB.range, iftrans == True.
- sigma
Sequence of interpolation points (closed under conjugation), of the same length as
b.- trans
Boolean, see above.
- orth
If
True, orthonormalizes the basis usingpymor.algorithms.gram_schmidt.gram_schmidt.
Returns
- V
Optionally orthonormal basis for the Krylov subspace as a
VectorArray.