pymor.models.interface¶
Module Contents¶
- class pymor.models.interface.Model(dim_input=0, products=None, error_estimator=None, visualizer=None, name=None)[source]¶
Bases:
pymor.core.cache.CacheableObject,pymor.parameters.base.ParametricObjectInterface for model objects.
A model object defines a discrete problem via its
classand theOperatorsit contains. Furthermore, models can besolvedfor givenparameter valuesresulting in a solutionVectorArray.- solution_space[source]¶
VectorSpaceof the solutionVectorArraysreturned bysolve.
Methods
Set of quantities that can be compute via
compute.Compute the solution of the model and associated quantities.
Estimate the error for the computed internal state.
Estimate the error for the computed output.
Return the model output for given
parameter valuesmu.Compute the output sensitivities w.r.t. the model's parameters.
Solve the discrete problem for the
parameter valuesmu.Compute the solution sensitivity w.r.t. a single parameter.
Visualize a
VectorArrayU of the model'ssolution_space.- compute(data=None, *, solution=False, output=False, solution_d_mu=False, output_d_mu=False, solution_error_estimate=False, output_error_estimate=False, mu=None, input=None, **kwargs)[source]¶
Compute the solution of the model and associated quantities.
This method computes the output of the model, its internal state, and various associated quantities for given
parameter valuesmu.Parameters
- data
If not
None, a dict of already computed quantities for the givenmuandinput. If used, newly computed quantities are added to the given dict and the same dict is returned. Providing adatadict can be helpful when some quantities (e.g.,output) depend on already known quantities (e.g,solution) and caching has not been activated.- solution
If
True, return the model’s internal state.- output
If
True, return the model output.- solution_d_mu
If not
False, eitherTrueto return the sensitivities of the model’s solution w.r.t. all parameters, or a sequence of tuples(parameter, index)to compute the solution sensitivities for selected parameters.- output_d_mu
If
True, return the output sensitivities w.r.t. the model’s parameters.- solution_error_estimate
If
True, return an error estimate for the computed internal state.- output_error_estimate
If
True, return an error estimate for the computed output.- mu
Parameter valuesfor which to compute the values.- input
The model input. Either a
NumPy arrayof shape(self.dim_input,), aFunctionwithdim_domain == 1andshape_range == (self.dim_input,)mapping time to input, or astrexpression withtas variable that can be used to instantiate anExpressionFunctionof this type. Can beNoneifself.dim_input == 0.- kwargs
Additional keyword arguments to select further quantities that should be computed.
Returns
A dict with the computed values.
- estimate_error(mu=None, input=None)[source]¶
Estimate the error for the computed internal state.
For given
parameter valuesmuthis method returns an error estimate for the computed internal model state as returned bysolve. It is a convenience wrapper aroundcompute.The model error could be the error w.r.t. the analytical solution of the given problem or the model reduction error w.r.t. a corresponding high-dimensional
Model.Parameters
- mu
Parameter valuesfor which to estimate the error.- input
The model input. Either a
NumPy arrayof shape(self.dim_input,), aFunctionwithdim_domain == 1andshape_range == (self.dim_input,)mapping time to input, or astrexpression withtas variable that can be used to instantiate anExpressionFunctionof this type. Can beNoneifself.dim_input == 0.
Returns
The estimated : attr:
solution_spaceerror as a 1DNumPy array. For stationary problems, the returned array has length 1. For time-dependent problems, the length depends on the number of time steps. The norm w.r.t. which the error is estimated depends on the given problem.
- estimate_output_error(mu=None, input=None)[source]¶
Estimate the error for the computed output.
For given
parameter valuesmuthis method returns an error estimate for the computed model output as returned byoutput. It is a convenience wrapper aroundcompute.The output error could be the error w.r.t. the analytical solution of the given problem or the model reduction error w.r.t. a corresponding high-dimensional
Model.Parameters
- mu
Parameter valuesfor which to estimate the error.- input
The model input. Either a
NumPy arrayof shape(self.dim_input,), aFunctionwithdim_domain == 1andshape_range == (self.dim_input,)mapping time to input, or astrexpression withtas variable that can be used to instantiate anExpressionFunctionof this type. Can beNoneifself.dim_input == 0.
Returns
The estimated model output as a 2D
NumPy array. The dimension of axis 1 is : attr:dim_output. For stationary problems, axis 0 has dimension 1. For time-dependent problems, the dimension of axis 0 depends on the number of time steps. The spatial/temporal norms w.r.t. which the error is estimated depend on the given problem.
- output(mu=None, input=None, return_error_estimate=False)[source]¶
Return the model output for given
parameter valuesmu.This method is a convenience wrapper around
compute.Parameters
- mu
Parameter valuesfor which to compute the output.- input
The model input. Either a
NumPy arrayof shape(self.dim_input,), aFunctionwithdim_domain == 1andshape_range == (self.dim_input,)mapping time to input, or astrexpression withtas variable that can be used to instantiate anExpressionFunctionof this type. Can beNoneifself.dim_input == 0.- return_error_estimate
If
True, also return an error estimate for the computed output.
Returns
The computed model output as a 2D
NumPy array. The dimension of axis 1 is : attr:dim_output. (For stationary problems, axis 0 has dimension 1. For time-dependent problems, the dimension of axis 0 depends on the number of time steps.) Whenreturn_error_estimateisTrue, the estimate is returned as second value.
- output_d_mu(mu=None, input=None)[source]¶
Compute the output sensitivities w.r.t. the model’s parameters.
Parameters
- mu
Parameter valueat which to compute the output sensitivities.- input
The model input. Either a
NumPy arrayof shape(self.dim_input,), aFunctionwithdim_domain == 1andshape_range == (self.dim_input,)mapping time to input, or astrexpression withtas variable that can be used to instantiate anExpressionFunctionof this type. Can beNoneifself.dim_input == 0.
Returns
The output sensitivities as a dict
{(parameter, index) : sensitivity}wheresensitivityis a 2DNumPy arrayswith axis 0 corresponding to time and axis 1 corresponding to the output component. The returned : class:OutputDMuResultobject has ameth:~OutputDMuResult.to_numpy` method to convert it into a single NumPy array, e.g., for use in optimization libraries.
- solve(mu=None, input=None, return_error_estimate=False)[source]¶
Solve the discrete problem for the
parameter valuesmu.This method returns a
VectorArraywith a internal state representation of the model’s solution for givenparameter values. It is a convenience wrapper aroundcompute.The result may be
cachedin case caching has been activated for the given model.Parameters
- mu
Parameter valuesfor which to solve.- input
The model input. Either a
NumPy arrayof shape(self.dim_input,), aFunctionwithdim_domain == 1andshape_range == (self.dim_input,)mapping time to input, or astrexpression withtas variable that can be used to instantiate anExpressionFunctionof this type. Can beNoneifself.dim_input == 0.- return_error_estimate
If
True, also return an error estimate for the computed solution.
Returns
The solution
VectorArray. Whenreturn_error_estimateisTrue, the estimate is returned as second value.
- solve_d_mu(parameter, index, mu=None, input=None)[source]¶
Compute the solution sensitivity w.r.t. a single parameter.
Parameters
- parameter
Parameter for which to compute the sensitivity.
- index
Parameter index for which to compute the sensitivity.
- mu
Parameter valueat which to compute the sensitivity.- input
The model input. Either a
NumPy arrayof shape(self.dim_input,), aFunctionwithdim_domain == 1andshape_range == (self.dim_input,)mapping time to input, or astrexpression withtas variable that can be used to instantiate anExpressionFunctionof this type. Can beNoneifself.dim_input == 0.
Returns
The sensitivity of the solution as a
VectorArray.
- visualize(U, **kwargs)[source]¶
Visualize a
VectorArrayU of the model’ssolution_space.Parameters
- U
The
VectorArrayfromsolution_spacethat shall be visualized.- kwargs
Additional keyword arguments to customize the visualization. See the docstring of
self.visualizer.visualize.
- class pymor.models.interface.OutputDMuResult(*args, **kwargs)[source]¶
Bases:
pymor.tools.frozendict.FrozenDictImmutable dict of gradients returned by
output_d_mu.Methods
Return gradients as a single 3D NumPy array.