pymor.analyticalproblems.elliptic¶
Module Contents¶
- class pymor.analyticalproblems.elliptic.StationaryProblem(domain, rhs=None, diffusion=None, advection=None, nonlinear_advection=None, nonlinear_advection_derivative=None, reaction=None, nonlinear_reaction=None, nonlinear_reaction_derivative=None, dirichlet_data=None, neumann_data=None, robin_data=None, outputs=None, parameter_ranges=None, name=None)[source]¶
Bases:
pymor.parameters.base.ParametricObjectLinear elliptic problem description.
The problem consists in solving
- ∇ ⋅ [d(x, μ) ∇ u(x, μ)] + ∇ ⋅ [f_l(x, μ)u(x, μ)] + ∇ ⋅ f_n(u(x, μ), μ) + c_l(x, μ) u(x, μ) + c_n(u(x, μ), μ) = g(x, μ)
for u.
- Parameters:
domain – A
DomainDescriptionof the domain the problem is posed on.rhs – The
Functiong.rhs.dim_domainhas to agree with the dimension ofdomain, whereasrhs.shape_rangehas to be().diffusion – The
Functiond withshape_rangeof either()or(dim domain, dim domain).advection – The
Functionf_l, only depending on x, withshape_rangeof(dim domain,).nonlinear_advection – The
Functionf_n, only depending on u, withshape_rangeof(dim domain,).nonlinear_advection_derivative – The derivative of f_n, only depending on u, with respect to u.
reaction – The
Functionc_l, only depending on x, withshape_rangeof().nonlinear_reaction – The
Functionc_n, only depending on u, withshape_rangeof().nonlinear_reaction_derivative – The derivative of the
Functionc_n, only depending on u, withshape_rangeof().dirichlet_data –
Functionproviding the Dirichlet boundary values.neumann_data –
Functionproviding the Neumann boundary values.robin_data – Tuple of two
Functionsproviding the Robin parameter and boundary values.outputs –
Tuple of additional output functionals to assemble. Each value must be a tuple of the form
(functional_type, data)wherefunctional_typeis a string defining the type of functional to assemble anddatais aFunctionholding the corresponding coefficient function. Currently implementedfunctional_typesare:- l2:
Evaluate the l2-product with the given data function.
- l2_boundary:
Evaluate the l2-product with the given data function on the boundary.
- quadratic:
Evaluate the integral of the data function scaled by the squared solution (u, u).
parameter_ranges – Ranges of interest for the
Parametersof the problem.name – Name of the problem.