pymor.analyticalproblems.elliptic
¶
Module Contents¶
- class pymor.analyticalproblems.elliptic.StationaryProblem(domain, rhs=None, diffusion=None, advection=None, nonlinear_advection=None, nonlinear_advection_derivative=None, reaction=None, nonlinear_reaction=None, nonlinear_reaction_derivative=None, dirichlet_data=None, neumann_data=None, robin_data=None, outputs=None, parameter_ranges=None, name=None)[source]¶
Bases:
pymor.parameters.base.ParametricObject
Linear elliptic problem description.
The problem consists in solving
- ∇ ⋅ [d(x, μ) ∇ u(x, μ)] + ∇ ⋅ [f_l(x, μ)u(x, μ)] + ∇ ⋅ f_n(u(x, μ), μ) + c_l(x, μ) u(x, μ) + c_n(u(x, μ), μ) = g(x, μ)
for u.
Parameters
- domain
A
DomainDescription
of the domain the problem is posed on.- rhs
The
Function
g.rhs.dim_domain
has to agree with the dimension ofdomain
, whereasrhs.shape_range
has to be()
.- diffusion
The
Function
d withshape_range
of either()
or(dim domain, dim domain)
.- advection
The
Function
f_l, only depending on x, withshape_range
of(dim domain,)
.- nonlinear_advection
The
Function
f_n, only depending on u, withshape_range
of(dim domain,)
.- nonlinear_advection_derivative
The derivative of f_n, only depending on u, with respect to u.
- reaction
The
Function
c_l, only depending on x, withshape_range
of()
.- nonlinear_reaction
The
Function
c_n, only depending on u, withshape_range
of()
.- nonlinear_reaction_derivative
The derivative of the
Function
c_n, only depending on u, withshape_range
of()
.- dirichlet_data
Function
providing the Dirichlet boundary values.- neumann_data
Function
providing the Neumann boundary values.- robin_data
Tuple of two
Functions
providing the Robin parameter and boundary values.- outputs
Tuple of additional output functionals to assemble. Each value must be a tuple of the form
(functional_type, data)
wherefunctional_type
is a string defining the type of functional to assemble anddata
is aFunction
holding the corresponding coefficient function. Currently implementedfunctional_types
are:- l2:
Evaluate the l2-product with the given data function.
- l2_boundary:
Evaluate the l2-product with the given data function on the boundary.
- quadratic:
Evaluate the integral of the data function scaled by the squared solution (u, u).
- parameter_ranges
Ranges of interest for the
Parameters
of the problem.- name
Name of the problem.