pymor.discretizers.builtin.grids.unstructured¶
Module Contents¶
- class pymor.discretizers.builtin.grids.unstructured.UnstructuredTriangleGrid(sizes, subentity_data, embedding_data)[source]¶
Bases:
pymor.discretizers.builtin.grids.interfaces.GridA generic unstructured, triangular grid.
Use
from_verticesto instantiate the grid from vertex coordinates and connectivity data.Methods
Return embeddings.
Instantiate grid from vertex coordinates and connectivity data.
The number of entities of codimension
codim.Return subentities.
Visualize scalar data associated to the grid as a patch plot.
- embeddings(codim=0)[source]¶
Return embeddings.
Returns tuple
(A, B)whereA[e]andB[e]are the linear part and the translation part of the map from the reference element ofetoe.For
codim > 0, we provide a default implementation by taking the embedding of the codim-1 parent entitye_0ofewith lowest global index and composing it with the subentity_embedding ofeintoe_0determined by the reference element.
- classmethod from_vertices(vertices, faces)[source]¶
Instantiate grid from vertex coordinates and connectivity data.
- Parameters:
vertices – A (num_vertices, 2)-shaped
NumPy arraycontaining the coordinates of all vertices in the grid. The row numbers in the array will be the global indices of the given vertices (codim 2 entities).faces – A (num_faces, 3)-shaped
NumPy arraycontaining the global indices of the vertices which define a given triangle in the grid. The row numbers in the array will be the global indices of the given triangles (codim 0 entities).
- subentities(codim=0, subentity_codim=None)[source]¶
Return subentities.
retval[e,s]is the global index of thes-th codim-subentity_codimsubentity of the codim-codimentity with global indexe.The ordering of
subentities(0, subentity_codim)[e]has to correspond, w.r.t. the embedding ofe, to the local ordering inside the reference element.For
codim > 0, we provide a default implementation by calculating the subentities ofeas follows:Find the
codim-1parent entitye_0ofewith minimal global indexLookup the local indices of the subentities of
einsidee_0using the reference element.Map these local indices to global indices using
subentities(codim - 1, subentity_codim).
This procedures assures that
subentities(codim, subentity_codim)[e]has the right ordering w.r.t. the embedding determined bye_0, which agrees with what is returned byembeddings(codim)
- visualize(U, codim=2, **kwargs)[source]¶
Visualize scalar data associated to the grid as a patch plot.
- Parameters:
U –
NumPy arrayof the data to visualize. IfU.dim == 2 and len(U) > 1, the data is visualized as a time series of plots. Alternatively, a tuple ofNumPy arrayscan be provided, in which case a subplot is created for each entry of the tuple. The lengths of all arrays have to agree.codim – The codimension of the entities the data in
Uis attached to (either 0 or 2).kwargs – See
visualize