pymor.models.examples¶
Module Contents¶
- pymor.models.examples.heat_equation_1d_example(diameter=0.01, nt=100)[source]¶
Return parametric 1D heat equation example with one output.
- Parameters:
diameter – Diameter option for the domain discretizer.
nt – Number of time steps.
- Returns:
fom – Heat equation problem as an
InstationaryModel.
- pymor.models.examples.heat_equation_example(grid_intervals=50, nt=50)[source]¶
Return heat equation example with a high-conductivity and two parametrized channels.
- Parameters:
grid_intervals – Number of intervals in each direction of the two-dimensional
RectDomain.nt – Number of time steps.
- Returns:
fom – Heat equation problem as an
InstationaryModel.
- pymor.models.examples.heat_equation_non_parametric_example(diameter=0.1, nt=100)[source]¶
Return non-parametric heat equation example with one output.
- Parameters:
diameter – Diameter option for the domain discretizer.
nt – Number of time steps.
- Returns:
fom – Heat equation problem as an
InstationaryModel.
- pymor.models.examples.msd_example(n=6, m=2, m_i=4, k_i=4, c_i=1, as_lti=False)[source]¶
Mass-spring-damper model as (port-Hamiltonian) linear time-invariant system.
Taken from [GPBvdS12].
- Parameters:
n – The order of the model.
m – The number or inputs and outputs of the model.
m_i – The weight of the masses.
k_i – The stiffness of the springs.
c_i – The amount of damping.
as_lti – If
True, the matrices of the standard linear time-invariant system are returned. Otherwise, the matrices of the port-Hamiltonian linear time-invariant system are returned.
- Returns:
fom – Mass-spring-damper model as an
LTIModel(ifas_ltiisTrue) orPHLTIModel(ifas_ltiisFalse).
- pymor.models.examples.penzl_example()[source]¶
Return Penzl’s example.
- Returns:
fom – Penzl’s FOM example as an
LTIModel.
- pymor.models.examples.penzl_mimo_example(n, m=2, p=3)[source]¶
Return modified multiple-input multiple-output Penzl’s example.
- Parameters:
n – Model order.
- Returns:
fom – Penzl’s FOM example as an
LTIModel.
- pymor.models.examples.stokes_2Dexample(mesh_resolution=4, rhs=None)[source]¶
Return a discretization of a parametric, stationary Stokes equation on the unit disk.
Discretizes the following Stokes equation
\[\begin{split}- \mu \Delta u(x, \mu) + \nabla p(x, \mu) & = f(x) \text{ in } \Omega \\ \nabla \cdot u(x, \mu) & = 0 \text{ in } \Omega\end{split}\]with homogeneous Dirichlet boundary conditions, where \(\mu\) is the dynamic viscosity and \(\Omega\) is the unit disk. To eliminate the singularity of the saddle-point system, one pressure node is set to zero.
- Parameters:
mesh_resolution – The number of mesh refinements performed by the scikit-fem discretizer on the unit disk.
rhs – The
Functionf.rhs.dim_domainhas to be 2, whereasrhs.shape_rangehas to be(2,). IfNone, a default right-hand side is chosen.
- Returns:
fom – Discretized Stokes equation as a
SaddlePointModel.
- pymor.models.examples.thermal_block_example(diameter=1 / 100)[source]¶
Return 2x2 thermal block example.
- Parameters:
diameter – Grid element diameter.
- Returns:
fom – Thermal block problem as a
StationaryModel.
- pymor.models.examples.transfer_function_delay_example(tau=1, a=-0.1)[source]¶
Return transfer function of a 1D system with input delay.
- Parameters:
tau – Time delay.
a – The matrix A in the 1D system as a scalar.
- Returns:
tf – Delay model as a
TransferFunction.