pymor.reductors.ph.ph_irka
¶
Module Contents¶
- class pymor.reductors.ph.ph_irka.PHIRKAReductor(fom, mu=None)[source]¶
Bases:
pymor.reductors.h2.GenericIRKAReductor
PH-IRKA reductor.
Parameters
- fom
The full-order
PHLTIModel
to reduce.- mu
Methods
Reduce using pH-IRKA.
- reduce(rom0_params, tol=0.0001, maxit=100, num_prev=1, projection='orth', conv_crit='sigma', compute_errors=False)[source]¶
Reduce using pH-IRKA.
See [GPBvdS12].
Parameters
- rom0_params
Can be:
order of the reduced model (a positive integer),
initial interpolation points (a 1D
NumPy array
),dict with
'sigma'
,'b'
,'c'
as keys mapping to initial interpolation points (a 1DNumPy array
), right tangential directions (NumPy array
of shape(len(sigma), fom.dim_input)
), and left tangential directions (NumPy array
of shape(len(sigma), fom.dim_input)
),initial reduced-order model (
LTIModel
).
If the order of reduced model is given, initial interpolation data is generated randomly.
- tol
Tolerance for the convergence criterion.
- maxit
Maximum number of iterations.
- num_prev
Number of previous iterations to compare the current iteration to. Larger number can avoid occasional cyclic behavior of IRKA.
- projection
Projection method:
'orth'
: projection matrixV
is orthogonalized with respect to the Euclidean inner product.'QTEorth'
: projection matrixV
is orthogonalized with respect to thefom.Q.H @ fom.E
product.
- conv_crit
Convergence criterion:
'sigma'
: relative change in interpolation points'h2'
: relative \(\mathcal{H}_2\) distance of reduced-order models
- compute_errors
Should the relative \(\mathcal{H}_2\)-errors of intermediate reduced order models be computed.
Warning
Computing \(\mathcal{H}_2\)-errors is expensive. Use this option only if necessary.
Returns
- rom
Reduced-order
PHLTIModel
.