pymor.algorithms.krylov

Module for computing (rational) Krylov subspaces’ bases.

Module Contents

pymor.algorithms.krylov.arnoldi(A, E, b, r)[source]

Block Arnoldi algorithm.

Computes an orthonormal basis for the Krylov subspace

span{E1b,E1AE1b,(E1A)2E1b,,(E1A)r1E1b,}.

Parameters

A

The Operator A.

E

The Operator E. If None, the identity operator is assumed.

b

The VectorArray b.

r

Order of the Krylov subspace (positive integer).

Returns

V

Orthonormal basis for the Krylov subspace as a VectorArray with len(V) <= r*len(b) (strict inequality in case of deflation).

pymor.algorithms.krylov.rational_arnoldi(A, E, b, sigma, trans=False)[source]

Rational Arnoldi algorithm.

If trans == False, using Arnoldi process, computes a real orthonormal basis for the rational Krylov subspace

span{(σ1EA)1b,(σ2EA)1b,,(σrEA)1b},

otherwise, computes the same for

span{(σ1EA)TbT,(σ2EA)TbT,,(σrEA)TbT}.

Interpolation points in sigma are allowed to repeat (in any order). Then, in the above expression,

(σiEA)1b,,(σiEA)1bm times

is replaced by

(σiEA)1b,(σiEA)1E(σiEA)1b,,((σiEA)1E)m1(σiEA)1b.

Analogously for the trans == True case.

Parameters

A

Real Operator A.

E

Real Operator E.

b

Real vector-like operator (if trans is False) or functional (if trans is True).

sigma

Sequence of interpolation points (closed under conjugation).

trans

Boolean, see above.

Returns

V

Orthonormal basis for the Krylov subspace as a VectorArray.

pymor.algorithms.krylov.tangential_rational_krylov(A, E, B, b, sigma, trans=False, orth=True)[source]

Tangential Rational Krylov subspace.

If trans == False, computes a real basis for the rational Krylov subspace

span{(σ1EA)1Bb1,(σ2EA)1Bb2,,(σrEA)1Bbr},

otherwise, computes the same for

span{(σ1EA)TBTb1,(σ2EA)TBTb2,,(σrEA)TBTbr}.

Interpolation points in sigma are assumed to be pairwise distinct.

Parameters

A

Real Operator A.

E

Real Operator E.

B

Real Operator B.

b
VectorArray from B.source, if trans == False, or

B.range, if trans == True.

sigma

Sequence of interpolation points (closed under conjugation), of the same length as b.

trans

Boolean, see above.

orth

If True, orthonormalizes the basis using pymor.algorithms.gram_schmidt.gram_schmidt.

Returns

V

Optionally orthonormal basis for the Krylov subspace as a VectorArray.