pymor.algorithms.krylov
¶
Module for computing (rational) Krylov subspaces’ bases.
Module Contents¶
- pymor.algorithms.krylov.arnoldi(A, E, b, r)[source]¶
Block Arnoldi algorithm.
Computes an orthonormal basis for the Krylov subspace
Parameters
- A
The
Operator
A.- E
The
Operator
E. IfNone
, the identity operator is assumed.- b
The
VectorArray
b.- r
Order of the Krylov subspace (positive integer).
Returns
- V
Orthonormal basis for the Krylov subspace as a
VectorArray
withlen(V) <= r*len(b)
(strict inequality in case of deflation).
- pymor.algorithms.krylov.rational_arnoldi(A, E, b, sigma, trans=False)[source]¶
Rational Arnoldi algorithm.
If
trans == False
, using Arnoldi process, computes a real orthonormal basis for the rational Krylov subspaceotherwise, computes the same for
Interpolation points in
sigma
are allowed to repeat (in any order). Then, in the above expression,is replaced by
Analogously for the
trans == True
case.Parameters
Returns
- V
Orthonormal basis for the Krylov subspace as a
VectorArray
.
- pymor.algorithms.krylov.tangential_rational_krylov(A, E, B, b, sigma, trans=False, orth=True)[source]¶
Tangential Rational Krylov subspace.
If
trans == False
, computes a real basis for the rational Krylov subspaceotherwise, computes the same for
Interpolation points in
sigma
are assumed to be pairwise distinct.Parameters
- A
Real
Operator
A.- E
Real
Operator
E.- B
Real
Operator
B.- b
VectorArray
fromB.source
, iftrans == False
, orB.range
, iftrans == True
.
- sigma
Sequence of interpolation points (closed under conjugation), of the same length as
b
.- trans
Boolean, see above.
- orth
If
True
, orthonormalizes the basis usingpymor.algorithms.gram_schmidt.gram_schmidt
.
Returns
- V
Optionally orthonormal basis for the Krylov subspace as a
VectorArray
.