pymor.reductors.h2
¶
Reductors based on H2-norm.
Module Contents¶
- class pymor.reductors.h2.GapIRKAReductor(fom, mu=None, solver_options=None)[source]¶
Bases:
GenericIRKAReductor
Gap-IRKA reductor.
Methods
Reduce using gap-IRKA.
- reduce(rom0_params, tol=0.0001, maxit=100, num_prev=1, conv_crit='sigma', projection='orth')[source]¶
Reduce using gap-IRKA.
See [BBG22] Algorithm 1.
- Parameters:
rom0_params –
Can be:
order of the reduced model (a positive integer),
initial interpolation points (a 1D
NumPy array
),dict with
'sigma'
,'b'
,'c'
as keys mapping to initial interpolation points (a 1DNumPy array
), right tangential directions (VectorArray
fromfom.input_space
), and left tangential directions (VectorArray
fromfom.output_space
), all of the same length (the order of the reduced model),initial reduced-order model (
LTIModel
).
If the order of reduced model is given, initial interpolation data is generated randomly.
tol – Tolerance for the convergence criterion.
maxit – Maximum number of iterations.
num_prev – Number of previous iterations to compare the current iteration to. A larger number can avoid occasional cyclic behavior.
conv_crit –
Convergence criterion:
'sigma'
: relative change in interpolation points'htwogap'
: \(\mathcal{H}_2-gap\) distance of reduced-order models divided by \(\mathcal{L}_2\) norm of new reduced-order model'ltwo'
: relative \(\mathcal{L}_2\) distance of reduced-order models
projection –
Projection method:
'orth'
: projection matrix is orthogonalized with respect to the Euclidean inner product,'biorth'
: projection matrix is orthogonalized with respect to the E product.
- Returns:
rom – Reduced
LTIModel
model.
- class pymor.reductors.h2.GenericIRKAReductor(fom, mu=None)[source]¶
Bases:
pymor.core.base.BasicObject
Generic IRKA related reductor.
- Parameters:
fom – The full-order
Model
to reduce.mu –
Parameter values
.
Methods
Reconstruct high-dimensional vector from reduced vector
u
.
- class pymor.reductors.h2.IRKAReductor(fom, mu=None)[source]¶
Bases:
GenericIRKAReductor
Iterative Rational Krylov Algorithm reductor.
- Parameters:
fom – The full-order
LTIModel
to reduce.mu –
Parameter values
.
Methods
Reduce using IRKA.
- reduce(rom0_params, tol=0.0001, maxit=100, num_prev=1, force_sigma_in_rhp=False, projection='orth', conv_crit='sigma', compute_errors=False)[source]¶
Reduce using IRKA.
See [GAB08] (Algorithm 4.1) and [ABG10] (Algorithm 1).
- Parameters:
rom0_params –
Can be:
order of the reduced model (a positive integer),
initial interpolation points (a 1D
NumPy array
),dict with
'sigma'
,'b'
,'c'
as keys mapping to initial interpolation points (a 1DNumPy array
), right tangential directions (NumPy array
of shape(len(sigma), fom.dim_input)
), and left tangential directions (NumPy array
of shape(len(sigma), fom.dim_input)
),initial reduced-order model (
LTIModel
).
If the order of reduced model is given, initial interpolation data is generated randomly.
tol – Tolerance for the convergence criterion.
maxit – Maximum number of iterations.
num_prev – Number of previous iterations to compare the current iteration to. Larger number can avoid occasional cyclic behavior of IRKA.
force_sigma_in_rhp – If
False
, new interpolation are reflections of the current reduced-order model’s poles. Otherwise, only poles in the left half-plane are reflected.projection –
Projection method:
'orth'
: projection matrices are orthogonalized with respect to the Euclidean inner product'biorth'
: projection matrices are biorthogonalized with respect to the E product'arnoldi'
: projection matrices are orthogonalized using the Arnoldi process (available only for SISO systems).
conv_crit –
Convergence criterion:
'sigma'
: relative change in interpolation points'h2'
: relative \(\mathcal{H}_2\) distance of reduced-order models
compute_errors –
Should the relative \(\mathcal{H}_2\)-errors of intermediate reduced-order models be computed.
Warning
Computing \(\mathcal{H}_2\)-errors is expensive. Use this option only if necessary.
- Returns:
rom – Reduced
LTIModel
model.
- class pymor.reductors.h2.OneSidedIRKAReductor(fom, version, mu=None)[source]¶
Bases:
GenericIRKAReductor
One-Sided Iterative Rational Krylov Algorithm reductor.
- Parameters:
fom – The full-order
LTIModel
to reduce.version –
Version of the one-sided IRKA:
'V'
: Galerkin projection using the input Krylov subspace,'W'
: Galerkin projection using the output Krylov subspace.
mu –
Parameter values
.
Methods
Reduce using one-sided IRKA.
- reduce(rom0_params, tol=0.0001, maxit=100, num_prev=1, force_sigma_in_rhp=False, projection='orth', conv_crit='sigma', compute_errors=False)[source]¶
Reduce using one-sided IRKA.
- Parameters:
rom0_params –
Can be:
order of the reduced model (a positive integer),
initial interpolation points (a 1D
NumPy array
),dict with
'sigma'
,'b'
,'c'
as keys mapping to initial interpolation points (a 1DNumPy array
), right tangential directions (NumPy array
of shape(len(sigma), fom.dim_input)
), and left tangential directions (NumPy array
of shape(len(sigma), fom.dim_input)
),initial reduced-order model (
LTIModel
).
If the order of reduced model is given, initial interpolation data is generated randomly.
tol – Tolerance for the largest change in interpolation points.
maxit – Maximum number of iterations.
num_prev – Number of previous iterations to compare the current iteration to. A larger number can avoid occasional cyclic behavior.
force_sigma_in_rhp – If
False
, new interpolation are reflections of the current reduced-order model’s poles. Otherwise, only poles in the left half-plane are reflected.projection –
Projection method:
'orth'
: projection matrix is orthogonalized with respect to the Euclidean inner product,'Eorth'
: projection matrix is orthogonalized with respect to the E product.
conv_crit –
Convergence criterion:
'sigma'
: relative change in interpolation points,'h2'
: relative \(\mathcal{H}_2\) distance of reduced-order models.
compute_errors –
Should the relative \(\mathcal{H}_2\)-errors of intermediate reduced-order models be computed.
Warning
Computing \(\mathcal{H}_2\)-errors is expensive. Use this option only if necessary.
- Returns:
rom – Reduced
LTIModel
model.
- class pymor.reductors.h2.TFIRKAReductor(fom, mu=None)[source]¶
Bases:
GenericIRKAReductor
Realization-independent IRKA reductor.
See [BG12].
- Parameters:
fom –
TransferFunction
orModel
with atransfer_function
attribute, witheval_tf
andeval_dtf
methods that should be defined at least over the open right half of the complex plane.mu –
Parameter values
.
Methods
Reconstruct high-dimensional vector from reduced vector
u
.Reduce using TF-IRKA.
- reduce(rom0_params, tol=0.0001, maxit=100, num_prev=1, force_sigma_in_rhp=False, conv_crit='sigma', compute_errors=False)[source]¶
Reduce using TF-IRKA.
- Parameters:
rom0_params –
Can be:
order of the reduced model (a positive integer),
initial interpolation points (a 1D
NumPy array
),dict with
'sigma'
,'b'
,'c'
as keys mapping to initial interpolation points (a 1DNumPy array
), right tangential directions (NumPy array
of shape(len(sigma), fom.dim_input)
), and left tangential directions (NumPy array
of shape(len(sigma), fom.dim_input)
),initial reduced-order model (
LTIModel
).
If the order of reduced model is given, initial interpolation data is generated randomly.
tol – Tolerance for the convergence criterion.
maxit – Maximum number of iterations.
num_prev – Number of previous iterations to compare the current iteration to. Larger number can avoid occasional cyclic behavior of TF-IRKA.
force_sigma_in_rhp – If
False
, new interpolation are reflections of the current reduced-order model’s poles. Otherwise, only poles in the left half-plane are reflected.conv_crit –
Convergence criterion:
'sigma'
: relative change in interpolation points'h2'
: relative \(\mathcal{H}_2\) distance of reduced-order models
compute_errors –
Should the relative \(\mathcal{H}_2\)-errors of intermediate reduced-order models be computed.
Warning
Computing \(\mathcal{H}_2\)-errors is expensive. Use this option only if necessary.
- Returns:
rom – Reduced
LTIModel
model.
- class pymor.reductors.h2.TSIAReductor(fom, mu=None)[source]¶
Bases:
GenericIRKAReductor
Two-Sided Iteration Algorithm reductor.
- Parameters:
fom – The full-order
LTIModel
to reduce.mu –
Parameter values
.
Methods
Reduce using TSIA.
- reduce(rom0_params, tol=0.0001, maxit=100, num_prev=1, projection='orth', conv_crit='sigma', compute_errors=False)[source]¶
Reduce using TSIA.
See [XZ11] (Algorithm 1) and [BKohlerS11].
In exact arithmetic, TSIA is equivalent to IRKA (under some assumptions on the poles of the reduced model). The main difference in implementation is that TSIA computes the Schur decomposition of the reduced matrices, while IRKA computes the eigenvalue decomposition. Therefore, TSIA might behave better for non-normal reduced matrices.
- Parameters:
rom0_params –
Can be:
order of the reduced model (a positive integer),
initial interpolation points (a 1D
NumPy array
),dict with
'sigma'
,'b'
,'c'
as keys mapping to initial interpolation points (a 1DNumPy array
), right tangential directions (NumPy array
of shape(len(sigma), fom.dim_input)
), and left tangential directions (NumPy array
of shape(len(sigma), fom.dim_input)
),initial reduced-order model (
LTIModel
).
If the order of reduced model is given, initial interpolation data is generated randomly.
tol – Tolerance for the convergence criterion.
maxit – Maximum number of iterations.
num_prev – Number of previous iterations to compare the current iteration to. Larger number can avoid occasional cyclic behavior of TSIA.
projection –
Projection method:
'orth'
: projection matrices are orthogonalized with respect to the Euclidean inner product'biorth'
: projection matrices are biorthogonalized with respect to the E product
conv_crit –
Convergence criterion:
'sigma'
: relative change in interpolation points'h2'
: relative \(\mathcal{H}_2\) distance of reduced-order models
compute_errors –
Should the relative \(\mathcal{H}_2\)-errors of intermediate reduced-order models be computed.
Warning
Computing \(\mathcal{H}_2\)-errors is expensive. Use this option only if necessary.
- Returns:
rom – Reduced
LTIModel
.
- class pymor.reductors.h2.VectorFittingReductor(s, Hs, weights=None, conjugate=True)[source]¶
Bases:
pymor.core.base.BasicObject
Vector fitting reductor.
Only for single-input single-output (SISO) systems.
- Parameters:
s – Sampling points in the complex plane as a 1D
NumPy array
.Hs – Transfer function values at the sampling points
s
as a 1DNumPy array
. Alternatively,TransferFunction
orModel
withtransfer_function
attribute.weights – Weights in the weighted least squares error as a 1D
NumPy array
. If not given, it is set to a vector of ones.conjugate – Whether to include conjugated data.
Methods
Reduce using vector fitting.
- reduce(r=None, lambdas=None, tol=0.0001, maxit=100)[source]¶
Reduce using vector fitting.
Based on [DrmavcGB15].
- Parameters:
r – Reduced order (if not given, it is
len(lambdas)
).lambdas – Initial poles (if not given, it is set to
-np.logspace(-1, 0, r)
).tol – Tolerance for the convergence criterion.
maxit – Maximum number of iterations.
- Returns:
rom – Reduced-order
LTIModel
.