# This file is part of the pyMOR project (http://www.pymor.org).
# Copyright 2013-2020 pyMOR developers and contributors. All rights reserved.
# License: BSD 2-Clause License (http://opensource.org/licenses/BSD-2-Clause)
from pymor.core.config import config
if config.HAVE_SLYCOT:
import numpy as np
import slycot
from pymor.algorithms.genericsolvers import _parse_options
from pymor.algorithms.lyapunov import _solve_lyap_lrcf_check_args, _solve_lyap_dense_check_args, _chol
from pymor.algorithms.to_matrix import to_matrix
from pymor.bindings.scipy import _solve_ricc_check_args
from pymor.core.logger import getLogger
[docs] def lyap_lrcf_solver_options():
"""Return available Lyapunov solvers with default options for the slycot backend.
Returns
-------
A dict of available solvers with default solver options.
"""
return {'slycot_bartels-stewart': {'type': 'slycot_bartels-stewart'}}
[docs] def solve_lyap_lrcf(A, E, B, trans=False, options=None):
"""Compute an approximate low-rank solution of a Lyapunov equation.
See :func:`pymor.algorithms.lyapunov.solve_lyap_lrcf` for a
general description.
This function uses `slycot.sb03md` (if `E is None`) and
`slycot.sg03ad` (if `E is not None`), which are dense solvers
based on the Bartels-Stewart algorithm.
Therefore, we assume A and E can be converted to |NumPy arrays|
using :func:`~pymor.algorithms.to_matrix.to_matrix` and that
`B.to_numpy` is implemented.
Parameters
----------
A
The non-parametric |Operator| A.
E
The non-parametric |Operator| E or `None`.
B
The operator B as a |VectorArray| from `A.source`.
trans
Whether the first |Operator| in the Lyapunov equation is
transposed.
options
The solver options to use (see
:func:`lyap_lrcf_solver_options`).
Returns
-------
Z
Low-rank Cholesky factor of the Lyapunov equation solution,
|VectorArray| from `A.source`.
"""
_solve_lyap_lrcf_check_args(A, E, B, trans)
options = _parse_options(options, lyap_lrcf_solver_options(), 'slycot_bartels-stewart', None, False)
if options['type'] == 'slycot_bartels-stewart':
X = solve_lyap_dense(to_matrix(A, format='dense'),
to_matrix(E, format='dense') if E else None,
B.to_numpy().T if not trans else B.to_numpy(),
trans=trans, options=options)
Z = _chol(X)
else:
raise ValueError(f"Unexpected Lyapunov equation solver ({options['type']}).")
return A.source.from_numpy(Z.T)
[docs] def lyap_dense_solver_options():
"""Return available Lyapunov solvers with default options for the slycot backend.
Returns
-------
A dict of available solvers with default solver options.
"""
return {'slycot_bartels-stewart': {'type': 'slycot_bartels-stewart'}}
[docs] def solve_lyap_dense(A, E, B, trans=False, options=None):
"""Compute the solution of a Lyapunov equation.
See :func:`pymor.algorithms.lyapunov.solve_lyap_dense` for a
general description.
This function uses `slycot.sb03md` (if `E is None`) and
`slycot.sg03ad` (if `E is not None`), which are based on the
Bartels-Stewart algorithm.
Parameters
----------
A
The operator A as a 2D |NumPy array|.
E
The operator E as a 2D |NumPy array| or `None`.
B
The operator B as a 2D |NumPy array|.
trans
Whether the first operator in the Lyapunov equation is
transposed.
options
The solver options to use (see
:func:`lyap_dense_solver_options`).
Returns
-------
X
Lyapunov equation solution as a |NumPy array|.
"""
_solve_lyap_dense_check_args(A, E, B, trans)
options = _parse_options(options, lyap_dense_solver_options(), 'slycot_bartels-stewart', None, False)
if options['type'] == 'slycot_bartels-stewart':
n = A.shape[0]
C = -B.dot(B.T) if not trans else -B.T.dot(B)
trana = 'T' if not trans else 'N'
dico = 'C'
job = 'B'
if E is None:
U = np.zeros((n, n))
X, scale, sep, ferr, _ = slycot.sb03md(n, C, A, U, dico, job=job, trana=trana)
_solve_check(A.dtype, 'slycot.sb03md', sep, ferr)
else:
fact = 'N'
uplo = 'L'
Q = np.zeros((n, n))
Z = np.zeros((n, n))
_, _, _, _, X, scale, sep, ferr, _, _, _ = slycot.sg03ad(dico, job, fact, trana, uplo,
n, A, E,
Q, Z, C)
_solve_check(A.dtype, 'slycot.sg03ad', sep, ferr)
X /= scale
else:
raise ValueError(f"Unexpected Lyapunov equation solver ({options['type']}).")
return X
def _solve_check(dtype, solver, sep, ferr):
if ferr > 1e-1:
logger = getLogger(solver)
logger.warning(f'Estimated forward relative error bound is large (ferr={ferr:e}, sep={sep:e}). '
f'Result may not be accurate.')
[docs] def ricc_lrcf_solver_options():
"""Return available Riccati solvers with default options for the slycot backend.
Returns
-------
A dict of available solvers with default solver options.
"""
return {'slycot': {'type': 'slycot'}}
[docs] def solve_ricc_lrcf(A, E, B, C, R=None, S=None, trans=False, options=None):
"""Compute an approximate low-rank solution of a Riccati equation.
See :func:`pymor.algorithms.riccati.solve_ricc_lrcf` for a
general description.
This function uses `slycot.sb02md` (if E and S are `None`),
`slycot.sb02od` (if E is `None` and S is not `None`) and
`slycot.sg03ad` (if E is not `None`), which are dense solvers.
Therefore, we assume all |Operators| and |VectorArrays| can be
converted to |NumPy arrays| using
:func:`~pymor.algorithms.to_matrix.to_matrix` and
:func:`~pymor.vectorarrays.interface.VectorArray.to_numpy`.
Parameters
----------
A
The non-parametric |Operator| A.
E
The non-parametric |Operator| E or `None`.
B
The operator B as a |VectorArray| from `A.source`.
C
The operator C as a |VectorArray| from `A.source`.
R
The operator R as a 2D |NumPy array| or `None`.
S
The operator S as a |VectorArray| from `A.source` or `None`.
trans
Whether the first |Operator| in the Riccati equation is
transposed.
options
The solver options to use (see
:func:`ricc_lrcf_solver_options`).
Returns
-------
Z
Low-rank Cholesky factor of the Riccati equation solution,
|VectorArray| from `A.source`.
"""
_solve_ricc_check_args(A, E, B, C, R, S, trans)
options = _parse_options(options, ricc_lrcf_solver_options(), 'slycot', None, False)
if options['type'] != 'slycot':
raise ValueError(f"Unexpected Riccati equation solver ({options['type']}).")
A_source = A.source
A = to_matrix(A, format='dense')
E = to_matrix(E, format='dense') if E else None
B = B.to_numpy().T
C = C.to_numpy()
S = S.to_numpy().T if S else None
n = A.shape[0]
dico = 'C'
if E is None:
if S is None:
if not trans:
A = A.T
G = C.T.dot(C) if R is None else slycot.sb02mt(n, C.shape[0], C.T, R)[-1]
else:
G = B.dot(B.T) if R is None else slycot.sb02mt(n, B.shape[1], B, R)[-1]
Q = B.dot(B.T) if not trans else C.T.dot(C)
X, rcond = slycot.sb02md(n, A, G, Q, dico)[:2]
_ricc_rcond_check('slycot.sb02md', rcond)
else:
m = C.shape[0] if not trans else B.shape[1]
p = B.shape[1] if not trans else C.shape[0]
if R is None:
R = np.eye(m)
if not trans:
A = A.T
B, C = C.T, B.T
X, rcond = slycot.sb02od(n, m, A, B, C, R, dico, p=p, L=S, fact='C')[:2]
_ricc_rcond_check('slycot.sb02od', rcond)
else:
jobb = 'B'
fact = 'C'
uplo = 'U'
jobl = 'Z' if S is None else 'N'
scal = 'N'
sort = 'S'
acc = 'R'
m = C.shape[0] if not trans else B.shape[1]
p = B.shape[1] if not trans else C.shape[0]
if R is None:
R = np.eye(m)
if S is None:
S = np.empty((n, m))
if not trans:
A = A.T
E = E.T
B, C = C.T, B.T
out = slycot.sg02ad(dico, jobb, fact, uplo, jobl, scal, sort, acc,
n, m, p,
A, E, B, C, R, S)
X = out[1]
rcond = out[0]
_ricc_rcond_check('slycot.sg02ad', rcond)
return A_source.from_numpy(_chol(X).T)
def _ricc_rcond_check(solver, rcond):
if rcond < np.finfo(np.float64).eps:
logger = getLogger(solver)
logger.warning(f'Estimated reciprocal condition number is small (rcond={rcond:e}). '
f'Result may not be accurate.')
[docs] def pos_ricc_lrcf_solver_options():
"""Return available positive Riccati solvers with default options for the slycot backend.
Returns
-------
A dict of available solvers with default solver options.
"""
return {'slycot': {'type': 'slycot'}}
[docs] def solve_pos_ricc_lrcf(A, E, B, C, R=None, S=None, trans=False, options=None):
"""Compute an approximate low-rank solution of a positive Riccati equation.
See :func:`pymor.algorithms.riccati.solve_pos_ricc_lrcf` for a
general description.
This function uses `slycot.sb02md` (if E and S are `None`),
`slycot.sb02od` (if E is `None` and S is not `None`) and
`slycot.sg03ad` (if E is not `None`), which are dense solvers.
Therefore, we assume all |Operators| and |VectorArrays| can be
converted to |NumPy arrays| using
:func:`~pymor.algorithms.to_matrix.to_matrix` and
:func:`~pymor.vectorarrays.interface.VectorArray.to_numpy`.
Parameters
----------
A
The non-parametric |Operator| A.
E
The non-parametric |Operator| E or `None`.
B
The operator B as a |VectorArray| from `A.source`.
C
The operator C as a |VectorArray| from `A.source`.
R
The operator R as a 2D |NumPy array| or `None`.
S
The operator S as a |VectorArray| from `A.source` or `None`.
trans
Whether the first |Operator| in the positive Riccati
equation is transposed.
options
The solver options to use (see
:func:`pos_ricc_lrcf_solver_options`).
Returns
-------
Z
Low-rank Cholesky factor of the positive Riccati equation
solution, |VectorArray| from `A.source`.
"""
_solve_ricc_check_args(A, E, B, C, R, S, trans)
options = _parse_options(options, pos_ricc_lrcf_solver_options(), 'slycot', None, False)
if options['type'] != 'slycot':
raise ValueError(f"Unexpected positive Riccati equation solver ({options['type']}).")
if R is None:
R = np.eye(len(C) if not trans else len(B))
return solve_ricc_lrcf(A, E, B, C, -R, S, trans, options)