pymor.algorithms.bfgs
¶
Module Contents¶
- pymor.algorithms.bfgs.error_aware_bfgs(model, parameter_space=None, initial_guess=None, miniter=0, maxiter=100, rtol_output=1e-16, rtol_mu=1e-16, tol_sub=1e-08, line_search_params=None, stagnation_window=3, stagnation_threshold=np.inf, error_aware=False, error_criterion=None, line_search_error_criterion=None)[source]¶
BFGS algorithm.
This method solves the optimization problem
min J(mu), mu in C
for a model with an output functional \(J\) depending on a box-constrained
mu
using the BFGS method.In contrast to
scipy.optimize.minimize
with theL-BFGS-B
methods, this BFGS implementation is explicitly designed to work with an error estimator. In particular, this implementation terminates if the higher level TR boundary frompymor.algorithms.tr
is reached instead of continuing to optimize close to the boundary.- Parameters:
model – The
Model
with outputJ
used for the optimization.parameter_space – If not
None
, theParameterSpace
for enforcing the box constraints on theparameter values
mu
. Otherwise aParameterSpace
with lower bound -1 and upper bound 1.initial_guess – If not
None
,parameter values
containing an initial guess for the solutionmu
. Otherwise, randomparameter values
from the parameter space are chosen as the initial value.miniter – Minimum amount of iterations to perform.
maxiter – Fail if the iteration count reaches this value without converging.
rtol_output – Finish when the relative error measure of the output is below this threshold.
rtol_mu – Finish when the relative error measure of the
parameter values
is below this threshold.tol_sub – Finish when the first order criticality is below this threshold.
line_search_params – Dictionary of additional parameters passed to the Armijo line search method.
stagnation_window – Finish when the parameter update has not been enlarged by a factor of
stagnation_threshold
during the laststagnation_window
iterations.stagnation_threshold – See
stagnation_window
.error_aware – If
True
, perform an additional error aware check during the line search phase. Intended for use with the trust region algorithm.error_criterion – The additional error criterion used to check model confidence. This maps
parameter values
and an output value to a boolean indicating if the criterion is fulfilled. Refer to functionerror_aware_bfgs_criterion
inpymor.algorithms.tr.trust_region
for an example.line_search_error_criterion – The additional error criterion used to check model confidence in the line search. This maps
parameter values
and an output value to a boolean indicating if the criterion is fulfilled. Refer to functionerror_aware_line_search_criterion
inpymor.algorithms.tr.trust_region
for an example.
- Returns:
mu –
NumPy array
containing the computedparameter values
.data – Dict containing the following fields:
- mus:
list
ofparameter values
after each iteration.- foc_norms:
NumPy array
of the first order criticality norms after each iteration.- update_norms:
NumPy array
of the norms of the update vectors after each iteration.- iterations:
Number of total BFGS iterations.
- line_search_iterations:
NumPy array
of the number of line search iterations per BFGS iteration.
- Raises:
BFGSError – Raised if the BFGS algorithm failed to converge.