pymor.algorithms.riccati

Module Contents

pymor.algorithms.riccati.solve_pos_ricc_dense(A, E, B, C, R=None, S=None, trans=False, options=None, default_solver_backend=_DEFAULT_RICC_DENSE_SOLVER_BACKEND)[source]

Compute the solution of a Riccati equation.

Returns the solution \(X\) of a (generalized) continuous-time algebraic Riccati equation:

  • if trans is False

    \[A X E^T + E X A^T + (E X C^T + S^T) R^{-1} (C X E^T + S) + B B^T = 0.\]
  • if trans is True

    \[A^T X E + E^T X A + (E^T X B + S) R^{-1} (B^T X E + S^T) + C^T C = 0.\]

If E is None, it is taken to be identity, and similarly for R. If S is None, it is taken to be zero.

We assume:

  • A, E, B, C, R, S are real NumPy arrays,

  • E is nonsingular,

  • (E, A, B, C) is stabilizable and detectable,

  • R is symmetric positive definite, and

  • \(B B^T - S^T R^{-1} S\) (\(C^T C - S R^{-1} S^T\)) is positive semi-definite if trans is False (True).

If the solver is not specified using the options argument, a solver backend is chosen based on availability in the following order:

  1. slycot (see pymor.bindings.slycot.solve_ricc_dense)

  2. scipy (see pymor.bindings.scipy.solve_ricc_dense)

Parameters:
Returns:

X – Riccati equation solution as a NumPy array.

pymor.algorithms.riccati.solve_pos_ricc_lrcf(A, E, B, C, R=None, S=None, trans=False, options=None, default_dense_solver_backend=_DEFAULT_RICC_LRCF_DENSE_SOLVER_BACKEND)[source]

Compute an approximate low-rank solution of a positive Riccati equation.

Returns a low-rank Cholesky factor \(Z\) such that \(Z Z^T\) approximates the solution \(X\) of a (generalized) positive continuous-time algebraic Riccati equation:

  • if trans is False

    \[A X E^T + E X A^T + (E X C^T + S^T) R^{-1} (C X E^T + S) + B B^T = 0.\]
  • if trans is True

    \[A^T X E + E^T X A + (E^T X B + S) R^{-1} (B^T X E + S^T) + C^T C = 0.\]

If E is None, it is taken to be identity, and similarly for R. If S is None, it is taken to be zero.

If the solver is not specified using the options argument, a solver backend is chosen based on availability in the following order:

  1. slycot (see pymor.bindings.slycot.solve_pos_ricc_lrcf),

  2. scipy (see pymor.bindings.scipy.solve_pos_ricc_lrcf).

Currently, only dense solvers are provided.

Parameters:
Returns:

Z – Low-rank Cholesky factor of the positive Riccati equation solution, VectorArray from A.source.

pymor.algorithms.riccati.solve_ricc_dense(A, E, B, C, R=None, S=None, trans=False, options=None, default_solver_backend=_DEFAULT_RICC_DENSE_SOLVER_BACKEND)[source]

Compute the solution of a Riccati equation.

Returns the solution \(X\) of a (generalized) continuous-time algebraic Riccati equation:

  • if trans is False

    \[A X E^T + E X A^T - (E X C^T + S^T) R^{-1} (C X E^T + S) + B B^T = 0.\]
  • if trans is True

    \[A^T X E + E^T X A - (E^T X B + S) R^{-1} (B^T X E + S^T) + C^T C = 0.\]

If E is None, it is taken to be identity, and similarly for R. If S is None, it is taken to be zero.

We assume:

  • A, E, B, C, R, S are real NumPy arrays,

  • E is nonsingular,

  • (E, A, B, C) is stabilizable and detectable,

  • R is symmetric positive definite, and

  • \(B B^T - S^T R^{-1} S\) (\(C^T C - S R^{-1} S^T\)) is positive semi-definite if trans is False (True).

If the solver is not specified using the options argument, a solver backend is chosen based on availability in the following order:

  1. slycot (see pymor.bindings.slycot.solve_ricc_dense)

  2. scipy (see pymor.bindings.scipy.solve_ricc_dense)

Parameters:
Returns:

X – Riccati equation solution as a NumPy array.

pymor.algorithms.riccati.solve_ricc_lrcf(A, E, B, C, R=None, S=None, trans=False, options=None, default_sparse_solver_backend=_DEFAULT_RICC_LRCF_SPARSE_SOLVER_BACKEND, default_dense_solver_backend=_DEFAULT_RICC_LRCF_DENSE_SOLVER_BACKEND)[source]

Compute an approximate low-rank solution of a Riccati equation.

Returns a low-rank Cholesky factor \(Z\) such that \(Z Z^T\) approximates the solution \(X\) of a (generalized) continuous-time algebraic Riccati equation:

  • if trans is False

    \[A X E^T + E X A^T - (E X C^T + S^T) R^{-1} (C X E^T + S) + B B^T = 0.\]
  • if trans is True

    \[A^T X E + E^T X A - (E^T X B + S) R^{-1} (B^T X E + S^T) + C^T C = 0.\]

If E is None, it is taken to be identity, and similarly for R. If S is None, it is taken to be zero.

We assume:

  • A and E are real Operators,

  • B, C and S are real VectorArrays from A.source,

  • R is a real NumPy array,

  • E is nonsingular,

  • (E, A, B, C) is stabilizable and detectable,

  • R is symmetric positive definite, and

  • \(B B^T - S^T R^{-1} S\) (\(C^T C - S R^{-1} S^T\)) is positive semi-definite if trans is False (True).

For large-scale problems, we additionally assume that len(B) and len(C) are small.

If the solver is not specified using the options argument, a solver backend is chosen based on availability in the following order:

Parameters:
Returns:

Z – Low-rank Cholesky factor of the Riccati equation solution, VectorArray from A.source.