pymordemos.data_driven_fenics

Module Contents

pymordemos.data_driven_fenics.discretize_fenics()[source]
pymordemos.data_driven_fenics.main(regressor: Choices('fcnn vkoga gpr') = Argument(..., help="Regressor to use. Options are neural networks using PyTorch, pyMOR's VKOGA algorithm or Gaussian process regression using scikit-learn."), training_samples: int = Argument(..., help='Number of samples used for computing the reduced basis and training the regressor.'), validation_ratio: float = Option(0.1, help='Ratio of training data used for validation of the neural networks.'), input_scaling: bool = Option(False, help='Scale the input of the regressor (i.e. the parameter).'), output_scaling: bool = Option(False, help='Scale the output of the regressor (i.e. reduced coefficients or output quantity.'))[source]

Model order reduction with machine learning methods (approach by Hesthaven and Ubbiali).

pymordemos.data_driven_fenics.DIM = 2[source]
pymordemos.data_driven_fenics.FENICS_ORDER = 1[source]
pymordemos.data_driven_fenics.GRID_INTERVALS = 50[source]