pymor.reductors.ph.ph_irka
¶
Module Contents¶
- class pymor.reductors.ph.ph_irka.PHIRKAReductor(fom, mu=None)[source]¶
Bases:
pymor.reductors.h2.GenericIRKAReductor
PH-IRKA reductor.
- Parameters:
fom – The full-order
PHLTIModel
to reduce.mu –
Parameter values
.
Methods
Reduce using pH-IRKA.
- reduce(rom0_params, tol=0.0001, maxit=100, num_prev=1, projection='orth', conv_crit='sigma', compute_errors=False)[source]¶
Reduce using pH-IRKA.
See [GPBvdS12].
- Parameters:
rom0_params –
Can be:
order of the reduced model (a positive integer),
initial interpolation points (a 1D
NumPy array
),dict with
'sigma'
,'b'
,'c'
as keys mapping to initial interpolation points (a 1DNumPy array
), right tangential directions (NumPy array
of shape(len(sigma), fom.dim_input)
), and left tangential directions (NumPy array
of shape(len(sigma), fom.dim_input)
),initial reduced-order model (
LTIModel
).
If the order of reduced model is given, initial interpolation data is generated randomly.
tol – Tolerance for the convergence criterion.
maxit – Maximum number of iterations.
num_prev – Number of previous iterations to compare the current iteration to. Larger number can avoid occasional cyclic behavior of IRKA.
projection –
Projection method:
'orth'
: projection matrixV
is orthogonalized with respect to the Euclidean inner product.'QTEorth'
: projection matrixV
is orthogonalized with respect to thefom.Q.H @ fom.E
product.
conv_crit –
Convergence criterion:
'sigma'
: relative change in interpolation points'h2'
: relative \(\mathcal{H}_2\) distance of reduced-order models
compute_errors –
Should the relative \(\mathcal{H}_2\)-errors of intermediate reduced order models be computed.
Warning
Computing \(\mathcal{H}_2\)-errors is expensive. Use this option only if necessary.
- Returns:
rom – Reduced-order
PHLTIModel
.