pymor.discretizers.builtin.gui.jupyter package¶
This module provides plotting support inside the Jupyter notebook.
To use these routines you first have to execute
%matplotlib notebook
inside the given notebook.
Submodules¶
logging module¶
-
class
pymor.discretizers.builtin.gui.jupyter.logging.
LogViewer
(out, accordion=None)[source]¶ Bases:
logging.Handler
Methods
acquire
,createLock
,flush
,format
,get_name
,handle
,handleError
,release
,set_name
,setFormatter
,setLevel
Filterer
addFilter
,filter
,removeFilter
-
class
pymor.discretizers.builtin.gui.jupyter.logging.
LoggingRedirector
[source]¶ Bases:
object
Methods
start
,stop
matplotlib module¶
-
class
pymor.discretizers.builtin.gui.jupyter.matplotlib.
MPLPlotBase
(U, grid, codim, legend, bounding_box=None, separate_colorbars=False, columns=2, separate_plots=False, separate_axes=False)[source]¶ Bases:
object
-
pymor.discretizers.builtin.gui.jupyter.matplotlib.
visualize_matplotlib_1d
(grid, U, codim=1, title=None, legend=None, separate_plots=True, separate_axes=False, columns=2)[source]¶ Visualize scalar data associated to a one-dimensional
Grid
as a plot.The grid’s
ReferenceElement
must be the line. The data can either be attached to the subintervals or vertices of the grid.Parameters
- grid
The underlying
Grid
.- U
VectorArray
of the data to visualize. Iflen(U) > 1
, the data is visualized as an animation in a single axes object or a series of axes, depending on theseparate_axes
switch. It is also possible to provide a tuple ofVectorArrays
, in which case several plots are made into one or multiple figures, depending on theseparate_plots
switch. The lengths of all arrays have to agree.- codim
The codimension of the entities the data in
U
is attached to (either 0 or 1).- title
Title of the plot.
- legend
Description of the data that is plotted. Most useful if
U
is a tuple in which caselegend
has to be a tuple of strings of the same length.- separate_plots
If
True
, use multiple figures to visualize multipleVectorArrays
.- separate_axes
If
True
, use separate axes for each figure instead of an Animation.- column
Number of columns the subplots are organized in.
-
pymor.discretizers.builtin.gui.jupyter.matplotlib.
visualize_patch
(grid, U, bounding_box=[0, 0], [1, 1], codim=2, title=None, legend=None, separate_colorbars=False, rescale_colorbars=False, columns=2)[source]¶ Visualize scalar data associated to a two-dimensional
Grid
as a patch plot.The grid’s
ReferenceElement
must be the triangle or square. The data can either be attached to the faces or vertices of the grid.Parameters
- grid
The underlying
Grid
.- U
VectorArray
of the data to visualize. Iflen(U) > 1
, the data is visualized as a time series of plots. Alternatively, a tuple ofVectorArrays
can be provided, in which case a subplot is created for each entry of the tuple. The lengths of all arrays have to agree.- bounding_box
A bounding box in which the grid is contained.
- codim
The codimension of the entities the data in
U
is attached to (either 0 or 2).- title
Title of the plot.
- legend
Description of the data that is plotted. Most useful if
U
is a tuple in which caselegend
has to be a tuple of strings of the same length.- separate_colorbars
If
True
, use separate colorbars for each subplot.- rescale_colorbars
If
True
, rescale colorbars to data in each frame.- columns
The number of columns in the visualizer GUI in case multiple plots are displayed at the same time.
threejs module¶
-
class
pymor.discretizers.builtin.gui.jupyter.threejs.
ColorBarRenderer
(*args, **kwargs)[source]¶ Bases:
ipywidgets.widgets.widget_box.VBox
Methods
freeze_camera
,goto
DOMWidget
add_class
,remove_class
Widget
add_traits
,close
,close_all
,get_manager_state
,get_state
,get_view_spec
,handle_comm_opened
,hold_sync
,notify_change
,on_displayed
,on_msg
,on_widget_constructed
,open
,send
,send_state
,set_state
,__del__
HasTraits
class_own_trait_events
,class_own_traits
,class_trait_names
,class_traits
,has_trait
,hold_trait_notifications
,observe
,on_trait_change
,set_trait
,setup_instance
,trait_events
,trait_metadata
,trait_names
,traits
,unobserve
,unobserve_all
Attributes
Box
box_style
,children
DOMWidget
layout
Widget
comm
,keys
,model_id
,widget_types
,widgets
LoggingHasTraits
log
HasTraits
cross_validation_lock
-
class
pymor.discretizers.builtin.gui.jupyter.threejs.
Renderer
(*args, **kwargs)[source]¶ Bases:
ipywidgets.widgets.widget_box.VBox
Methods
freeze_camera
,goto
DOMWidget
add_class
,remove_class
Widget
add_traits
,close
,close_all
,get_manager_state
,get_state
,get_view_spec
,handle_comm_opened
,hold_sync
,notify_change
,on_displayed
,on_msg
,on_widget_constructed
,open
,send
,send_state
,set_state
,__del__
HasTraits
class_own_trait_events
,class_own_traits
,class_trait_names
,class_traits
,has_trait
,hold_trait_notifications
,observe
,on_trait_change
,set_trait
,setup_instance
,trait_events
,trait_metadata
,trait_names
,traits
,unobserve
,unobserve_all
Attributes
Box
box_style
,children
DOMWidget
layout
Widget
comm
,keys
,model_id
,widget_types
,widgets
LoggingHasTraits
log
HasTraits
cross_validation_lock
-
class
pymor.discretizers.builtin.gui.jupyter.threejs.
ThreeJSPlot
(*args, **kwargs)[source]¶ Bases:
ipywidgets.widgets.widget_box.VBox
Methods
finish_loading
DOMWidget
add_class
,remove_class
Widget
add_traits
,close
,close_all
,get_manager_state
,get_state
,get_view_spec
,handle_comm_opened
,hold_sync
,notify_change
,on_displayed
,on_msg
,on_widget_constructed
,open
,send
,send_state
,set_state
,__del__
HasTraits
class_own_trait_events
,class_own_traits
,class_trait_names
,class_traits
,has_trait
,hold_trait_notifications
,observe
,on_trait_change
,set_trait
,setup_instance
,trait_events
,trait_metadata
,trait_names
,traits
,unobserve
,unobserve_all
Attributes
Box
box_style
,children
DOMWidget
layout
Widget
comm
,keys
,model_id
,widget_types
,widgets
LoggingHasTraits
log
HasTraits
cross_validation_lock
-
pymor.discretizers.builtin.gui.jupyter.threejs.
visualize_py3js
(grid, U, bounding_box=([0, 0], [1, 1]), codim=2, title=None, legend=None, separate_colorbars=False, rescale_colorbars=False, columns=2, color_map=<matplotlib.colors.ListedColormap object>)[source]¶ Generate a pythreejs Plot and associated controls for scalar data associated to a two-dimensional
Grid
.The grid’s
ReferenceElement
must be the triangle or square. The data can either be attached to the faces or vertices of the grid.Parameters
- grid
The underlying
Grid
.- U
VectorArray
of the data to visualize. Iflen(U) 1
, the data is visualized as a time series of plots. Alternatively, a tuple ofVectorArrays
can be provided, in which case a subplot is created for each entry of the tuple. The lengths of all arrays have to agree.- bounding_box
A bounding box in which the grid is contained.
- codim
The codimension of the entities the data in
U
is attached to (either 0 or 2).- title
Title of the plot.
- legend
Description of the data that is plotted. Most useful if
U
is a tuple in which caselegend
has to be a tuple of strings of the same length.- separate_colorbars
If
True
, use separate colorbars for each subplot.- rescale_colorbars
If
True
, rescale colorbars to data in each frame.- columns
The number of columns in the visualizer GUI in case multiple plots are displayed at the same time.
- color_map
a Matplotlib Colormap object