pymor.discretizers.builtin.gui.jupyter package¶
This module provides plotting support inside the Jupyter notebook.
To use these routines you first have to execute
%matplotlib notebook
inside the given notebook.
Submodules¶
logging module¶
-
class
pymor.discretizers.builtin.gui.jupyter.logging.LogViewer(out, accordion=None)[source]¶ Bases:
logging.HandlerMethods
acquire,createLock,flush,format,get_name,handle,handleError,release,set_name,setFormatter,setLevelFiltereraddFilter,filter,removeFilter
-
class
pymor.discretizers.builtin.gui.jupyter.logging.LoggingRedirector[source]¶ Bases:
objectMethods
start,stop
matplotlib module¶
-
class
pymor.discretizers.builtin.gui.jupyter.matplotlib.MPLPlotBase(U, grid, codim, legend, bounding_box=None, separate_colorbars=False, columns=2, separate_plots=False, separate_axes=False)[source]¶ Bases:
object
-
pymor.discretizers.builtin.gui.jupyter.matplotlib.visualize_matplotlib_1d(grid, U, codim=1, title=None, legend=None, separate_plots=True, separate_axes=False, columns=2)[source]¶ Visualize scalar data associated to a one-dimensional
Gridas a plot.The grid’s
ReferenceElementmust be the line. The data can either be attached to the subintervals or vertices of the grid.Parameters
- grid
The underlying
Grid.- U
VectorArrayof the data to visualize. Iflen(U) > 1, the data is visualized as an animation in a single axes object or a series of axes, depending on theseparate_axesswitch. It is also possible to provide a tuple ofVectorArrays, in which case several plots are made into one or multiple figures, depending on theseparate_plotsswitch. The lengths of all arrays have to agree.- codim
The codimension of the entities the data in
Uis attached to (either 0 or 1).- title
Title of the plot.
- legend
Description of the data that is plotted. Most useful if
Uis a tuple in which caselegendhas to be a tuple of strings of the same length.- separate_plots
If
True, use multiple figures to visualize multipleVectorArrays.- separate_axes
If
True, use separate axes for each figure instead of an Animation.- column
Number of columns the subplots are organized in.
-
pymor.discretizers.builtin.gui.jupyter.matplotlib.visualize_patch(grid, U, bounding_box=[0, 0], [1, 1], codim=2, title=None, legend=None, separate_colorbars=False, rescale_colorbars=False, columns=2)[source]¶ Visualize scalar data associated to a two-dimensional
Gridas a patch plot.The grid’s
ReferenceElementmust be the triangle or square. The data can either be attached to the faces or vertices of the grid.Parameters
- grid
The underlying
Grid.- U
VectorArrayof the data to visualize. Iflen(U) > 1, the data is visualized as a time series of plots. Alternatively, a tuple ofVectorArrayscan be provided, in which case a subplot is created for each entry of the tuple. The lengths of all arrays have to agree.- bounding_box
A bounding box in which the grid is contained.
- codim
The codimension of the entities the data in
Uis attached to (either 0 or 2).- title
Title of the plot.
- legend
Description of the data that is plotted. Most useful if
Uis a tuple in which caselegendhas to be a tuple of strings of the same length.- separate_colorbars
If
True, use separate colorbars for each subplot.- rescale_colorbars
If
True, rescale colorbars to data in each frame.- columns
The number of columns in the visualizer GUI in case multiple plots are displayed at the same time.
threejs module¶
-
class
pymor.discretizers.builtin.gui.jupyter.threejs.ColorBarRenderer(*args, **kwargs)[source]¶ Bases:
ipywidgets.widgets.widget_box.VBoxMethods
freeze_camera,gotoDOMWidgetadd_class,remove_classWidgetadd_traits,close,close_all,get_manager_state,get_state,get_view_spec,handle_comm_opened,hold_sync,notify_change,on_displayed,on_msg,on_widget_constructed,open,send,send_state,set_state,__del__HasTraitsclass_own_trait_events,class_own_traits,class_trait_names,class_traits,has_trait,hold_trait_notifications,observe,on_trait_change,set_trait,setup_instance,trait_events,trait_metadata,trait_names,traits,unobserve,unobserve_allAttributes
Boxbox_style,childrenDOMWidgetlayoutWidgetcomm,keys,model_id,widget_types,widgetsLoggingHasTraitslogHasTraitscross_validation_lock
-
class
pymor.discretizers.builtin.gui.jupyter.threejs.Renderer(*args, **kwargs)[source]¶ Bases:
ipywidgets.widgets.widget_box.VBoxMethods
freeze_camera,gotoDOMWidgetadd_class,remove_classWidgetadd_traits,close,close_all,get_manager_state,get_state,get_view_spec,handle_comm_opened,hold_sync,notify_change,on_displayed,on_msg,on_widget_constructed,open,send,send_state,set_state,__del__HasTraitsclass_own_trait_events,class_own_traits,class_trait_names,class_traits,has_trait,hold_trait_notifications,observe,on_trait_change,set_trait,setup_instance,trait_events,trait_metadata,trait_names,traits,unobserve,unobserve_allAttributes
Boxbox_style,childrenDOMWidgetlayoutWidgetcomm,keys,model_id,widget_types,widgetsLoggingHasTraitslogHasTraitscross_validation_lock
-
class
pymor.discretizers.builtin.gui.jupyter.threejs.ThreeJSPlot(*args, **kwargs)[source]¶ Bases:
ipywidgets.widgets.widget_box.VBoxMethods
finish_loadingDOMWidgetadd_class,remove_classWidgetadd_traits,close,close_all,get_manager_state,get_state,get_view_spec,handle_comm_opened,hold_sync,notify_change,on_displayed,on_msg,on_widget_constructed,open,send,send_state,set_state,__del__HasTraitsclass_own_trait_events,class_own_traits,class_trait_names,class_traits,has_trait,hold_trait_notifications,observe,on_trait_change,set_trait,setup_instance,trait_events,trait_metadata,trait_names,traits,unobserve,unobserve_allAttributes
Boxbox_style,childrenDOMWidgetlayoutWidgetcomm,keys,model_id,widget_types,widgetsLoggingHasTraitslogHasTraitscross_validation_lock
-
pymor.discretizers.builtin.gui.jupyter.threejs.visualize_py3js(grid, U, bounding_box=([0, 0], [1, 1]), codim=2, title=None, legend=None, separate_colorbars=False, rescale_colorbars=False, columns=2, color_map=<matplotlib.colors.ListedColormap object>)[source]¶ Generate a pythreejs Plot and associated controls for scalar data associated to a two-dimensional
Grid.The grid’s
ReferenceElementmust be the triangle or square. The data can either be attached to the faces or vertices of the grid.Parameters
- grid
The underlying
Grid.- U
VectorArrayof the data to visualize. Iflen(U) 1, the data is visualized as a time series of plots. Alternatively, a tuple ofVectorArrayscan be provided, in which case a subplot is created for each entry of the tuple. The lengths of all arrays have to agree.- bounding_box
A bounding box in which the grid is contained.
- codim
The codimension of the entities the data in
Uis attached to (either 0 or 2).- title
Title of the plot.
- legend
Description of the data that is plotted. Most useful if
Uis a tuple in which caselegendhas to be a tuple of strings of the same length.- separate_colorbars
If
True, use separate colorbars for each subplot.- rescale_colorbars
If
True, rescale colorbars to data in each frame.- columns
The number of columns in the visualizer GUI in case multiple plots are displayed at the same time.
- color_map
a Matplotlib Colormap object