Module Contents

pymordemos.elliptic.main(problem_number: int = Argument(..., min=0, max=1, help='Selects the problem to solve [0 or 1].'), dirichlet_number: int = Argument(..., min=0, max=2, help='Selects the Dirichlet data function [0 to 2].'), neumann_number: int = Argument(..., min=0, max=2, help='Selects the Neumann data function.'), neumann_count: int = Argument(..., min=0, max=3, help='0: no neumann boundary\n\n1: right edge is neumann boundary\n\n2: right+top edges are neumann boundary\n\n3: right+top+bottom edges are neumann boundary\n\n'), fv: bool = Option(False, help='Use finite volume discretization instead of finite elements.'), rect: bool = Option(False, help='Use RectGrid instead of TriaGrid.'))[source]

Solves the Poisson equation in 2D using pyMOR’s builtin discretization toolkit.