pymor.reductors.basic¶
Module Contents¶
- class pymor.reductors.basic.DelayLTIPGReductor(fom, W, V, E_biorthonormal=False)[source]¶
Bases:
ProjectionBasedReductorPetrov-Galerkin projection of an
LinearDelayModel.- Parameters:
Methods
Reconstruct high-dimensional vector from reduced vector
u.
- class pymor.reductors.basic.InstationaryRBReductor(fom, RB=None, product=None, initial_data_product=None, product_is_mass=False, check_orthonormality=None, check_tol=None)[source]¶
Bases:
ProjectionBasedReductorGalerkin projection of an
InstationaryModel.- Parameters:
fom – The full order
Modelto reduce.RB – The basis of the reduced space onto which to project. If
Nonean empty basis is used.product – Inner product
Operatorw.r.t. whichRBis orthonormalized. IfNone, the the Euclidean inner product is used.initial_data_product – Inner product
Operatorw.r.t. which theinitial_dataoffomis orthogonally projected. IfNone, the Euclidean inner product is used.product_is_mass – If
True, no mass matrix for the reducedModelis assembled. Set toTrueifRBis orthonormal w.r.t. themassmatrix offom.check_orthonormality – See
ProjectionBasedReductor.check_tol – See
ProjectionBasedReductor.
- class pymor.reductors.basic.LTIPGReductor(fom, W, V, E_biorthonormal=False)[source]¶
Bases:
ProjectionBasedReductorPetrov-Galerkin projection of an
LTIModel.- Parameters:
Methods
Reconstruct high-dimensional vector from reduced vector
u.
- class pymor.reductors.basic.ProjectionBasedReductor(fom, bases, products={}, check_orthonormality=True, check_tol=0.001)[source]¶
Bases:
pymor.core.base.BasicObjectGeneric projection based reductor.
- Parameters:
fom – The full order
Modelto reduce.bases – A dict of
VectorArraysof basis vectors.products – A dict of inner product
Operatorsw.r.t. which the corresponding bases are orthonormalized. A value ofNonecorresponds to orthonormalization of the basis w.r.t. the Euclidean inner product.check_orthonormality – If
True, check if bases which have a corresponding entry in theproductsdict are orthonormal w.r.t. the given inner product. After eachbasis extension, orthonormality is checked again.check_tol – If
check_orthonormalityisTrue, the numerical tolerance with which the checks are performed.
Methods
Reconstruct high-dimensional vector from reduced vector
u.
- class pymor.reductors.basic.SOLTIPGReductor(fom, W, V, M_biorthonormal=False)[source]¶
Bases:
ProjectionBasedReductorPetrov-Galerkin projection of an
SecondOrderModel.- Parameters:
Methods
Reconstruct high-dimensional vector from reduced vector
u.
- class pymor.reductors.basic.StationaryRBReductor(fom, RB=None, product=None, check_orthonormality=None, check_tol=None)[source]¶
Bases:
ProjectionBasedReductorGalerkin projection of a
StationaryModel.- Parameters:
fom – The full order
Modelto reduce.RB – The basis of the reduced space onto which to project. If
Nonean empty basis is used.product – Inner product
Operatorw.r.t. whichRBis orthonormalized. IfNone, the Euclidean inner product is used.check_orthonormality – See
ProjectionBasedReductor.check_tol – See
ProjectionBasedReductor.