pymor.reductors.mt¶
Module Contents¶
- class pymor.reductors.mt.MTReductor(fom, mu=None)[source]¶
Bases:
pymor.core.base.BasicObjectModal Truncation reductor.
See Section 9.2 in [Ant05].
- Parameters:
fom – The full-order
LTIModelto reduce.mu –
Parameter values.
Methods
Reconstruct high-dimensional vector from reduced vector
u.Modal Truncation.
- reduce(r=None, decomposition='samdp', projection='orth', symmetric=False, which='NR', method_options=None, allow_complex_rom=False)[source]¶
Modal Truncation.
- Parameters:
r – Order of the reduced model.
decomposition –
Algorithm used for the decomposition:
'eig': scipy.linalg.eig algorithm'samdp': find dominant poles usingsamdpalgorithm
projection –
Projection method used:
'orth': projection matrices are orthogonalized with respect to the Euclidean inner product'biorth': projection matrices are biorthogonalized with respect to the E product
symmetric – If
True, assume A is symmetric and E is symmetric positive definite.which –
A string specifying which
reigenvalues and eigenvectors to compute. Possible values are:'SM': select eigenvalues with smallest magnitude (only for decomposition with eig)'LR': select eigenvalues with largest real part (only for decomposition with eig)'NR': select eigenvalues with largest norm(residual) / abs(Re(pole))'NS': select eigenvalues with largest norm(residual) / abs(pole)'NM': select eigenvalues with largest norm(residual)
method_options – Optional dict with more options for the samdp algorithm.
allow_complex_rom – If
True, the reduced model is complex when the poles of the reduced model are not closed under complex conjugation.
- Returns:
rom – Reduced-order model.