pymor.reductors.interpolation¶
Module Contents¶
- class pymor.reductors.interpolation.DelayBHIReductor(fom, mu=None)[source]¶
Bases:
GenericBHIReductorBitangential Hermite interpolation for
LinearDelayModels.- Parameters:
fom – The full-order
LinearDelayModelto reduce.mu –
Parameter values.
- class pymor.reductors.interpolation.GenericBHIReductor(fom, mu=None)[source]¶
Bases:
pymor.core.base.BasicObjectGeneric bitangential Hermite interpolation reductor.
This is a generic reductor for reducing any linear
Modelthat has a transfer function that is aFactorizedTransferFunction(see [BG09]). The interpolation here is limited to only up to the first derivative. Interpolation points are assumed to be pairwise distinct.In particular, given:
interpolation points \(\sigma_i\),
right tangential directions \(b_i\), and
left tangential directions \(c_i\),
for \(i = 1, 2, \ldots, r\), which are closed under conjugation (if \(\sigma_i\) is real, then so are \(b_i\) and \(c_i\); if \(\sigma_i\) is complex, there is \(\sigma_j\) such that \(\sigma_j = \overline{\sigma_i}\), \(b_j = \overline{b_i}\), \(c_j = \overline{c_i}\)), this reductor finds a transfer function \(\hat{H}\) such that
\[\begin{split}H(\sigma_i) b_i & = \hat{H}(\sigma_i) b_i, \\ c_i^T H(\sigma_i) & = c_i^T \hat{H}(\sigma_i), \\ c_i^T H'(\sigma_i) b_i & = c_i^T \hat{H}'(\sigma_i) b_i,\end{split}\]for all \(i = 1, 2, \ldots, r\).
- Parameters:
fom – The full-order
Modelto reduce.mu –
Parameter values.
Methods
Reconstruct high-dimensional vector from reduced vector
u.Bitangential Hermite interpolation.
- reduce(sigma, b, c, projection='orth')[source]¶
Bitangential Hermite interpolation.
- Parameters:
sigma – Interpolation points (closed under conjugation), sequence of length
r.b – Right tangential directions,
NumPy arrayof shape(r, fom.dim_input).c – Left tangential directions,
NumPy arrayof shape(r, fom.dim_output).projection –
Projection method:
'orth': projection matrices are orthogonalized with respect to the Euclidean inner product'biorth': projection matrices are biorthogonalized with respect to the E product
- Returns:
rom – Reduced-order model.
- class pymor.reductors.interpolation.LTIBHIReductor(fom, mu=None)[source]¶
Bases:
GenericBHIReductorBitangential Hermite interpolation for
LTIModels.- Parameters:
fom – The full-order
LTIModelto reduce.mu –
Parameter values.
Methods
Bitangential Hermite interpolation.
- reduce(sigma, b, c, projection='orth')[source]¶
Bitangential Hermite interpolation.
- Parameters:
sigma – Interpolation points (closed under conjugation), sequence of length
r.b – Right tangential directions,
NumPy arrayof shape(r, fom.dim_input).c – Left tangential directions,
NumPy arrayof shape(r, fom.dim_output).projection –
Projection method:
'orth': projection matrices are orthogonalized with respect to the Euclidean inner product'biorth': projection matrices are biorthogonalized with respect to the E product'arnoldi': projection matrices are orthogonalized using the rational Arnoldi process (available only for SISO systems).
- Returns:
rom – Reduced-order model.
- class pymor.reductors.interpolation.SOBHIReductor(fom, mu=None)[source]¶
Bases:
GenericBHIReductorBitangential Hermite interpolation for
SecondOrderModels.- Parameters:
fom – The full-order
SecondOrderModelto reduce.mu –
Parameter values.
- class pymor.reductors.interpolation.TFBHIReductor(fom, mu=None)[source]¶
Bases:
pymor.core.base.BasicObjectLoewner bitangential Hermite interpolation reductor.
See [BG12].
- Parameters:
fom –
TransferFunctionorModelwith atransfer_functionattribute.mu –
Parameter values.
Methods
Reconstruct high-dimensional vector from reduced vector
u.Realization-independent tangential Hermite interpolation.
- reduce(sigma, b, c)[source]¶
Realization-independent tangential Hermite interpolation.
- Parameters:
sigma – Interpolation points (closed under conjugation), sequence of length
r.b – Right tangential directions,
NumPy arrayof shape(r, fom.dim_input).c – Left tangential directions,
NumPy arrayof shape(r, fom.dim_output).
- Returns:
lti – The reduced-order
LTIModelinterpolating the transfer function offom.